1. Сумма бесконечно большого числа любых, хотя бы и бесконечно малых, но протяженных величин должна быть бесконечно большой;

2. Сумма любого, хотя бы и бесконечно большого числа непротя­женных величин всегда равна нулю и никогда не может стать некоторой заранее заданной протяженной величиной.


Именно в силу тесной взаимосвязи общих философских представле­ний с фундаментальными математическими положениями удар, нанесенный Зеноном по философским воззрениям, существенно затронул систему ма­тематических знаний. Целый ряд важнейших математических построений, считавшихся до этого несомненно истинными, в свете зеноновских пост­роений выглядели как противоречивые. Рассуждения Зенона привели к необходимости переосмыслить такие важные методологические вопросы, как природа бесконечности, соотношение между непрерывным и прерыв­ным и т.п. Они обратили внимание математиков на непрочность фунда­мента их научной деятельности и таким образом оказали стимулирующее воздействие на прогресс этой науки.

Следует обратить внимание и на обратную связь - на роль матема­тики в формировании элейской философии. Так, установлено, что апории Зенона связаны с нахождением суммы бесконечной геометрической прог­рессии. На этом основании советский историк математики Э. Кольман сделал предположение, что “именно на математический почве суммирова­ния таких прогрессий и выросли логико-философские апории Зенона”. Однако такое предположение, по-видимому, лишено достаточных основа­ний, так как оно слишком жестко связывает учение Зенона с математи­кой при том, что имеющие исторические данные не дают основания ут­верждать, что Зенон вообще был математиком.

Огромное значение для последующего развития математики имело повышение уровня абстракции математического познания, что произошло в большой степени благодаря деятельности элеатов. Конкретной формой проявления этого процесса было возникновение косвенного доказатель­ства (“от противного”), характерной чертой которого является доказа­тельство не самого утверждения, а абсурдности обратного ему. Таким образом был сделан шаг к становлению математики как дедуктивной нау­ки, созданы некоторые предпосылки для ее аксиоматического построе­ния.

Итак, философские рассуждения элеатов, с одной стороны, явились мощным толчком для принципиально новой постановки важнейших методо­логических вопросов математики, а с другой - послужили источником возникновения качественно новой формы обоснования математических знаний.


Глава 5

ДЕМОКРИТ


Аргументы Зенона вскрыли внутренние противоречия, которые имели место в сложившихся математических теориях. Тем самым факт существо­вания математики был поставлен под сомнение. Какими же путями разре­шались противоречия, выявленные Зеноном ?

Простейшим выходом из создавшегося положения бал отказ от абс­тракций в пользу того, что можно непосредственно проверить с помощью ощущений. Такую позицию занял софист Протагор. Он считал, что “мы не можем представить себе ничего прямого или круглого в том смысле, как представляет эти термины геометрия; в самом деле, круг касается пря­мой не в одной точке”. Таким образом, из математики следует убрать как ирреальные: представления о бесконечном числе вещей, так как никто не может считать до бесконечности; бесконечную делимость, пос­кольку она неосуществима практически и т.д. Таким путем математику можно сделать неуязвимой для рассуждений Зенона, но при этом практи­чески упраздняется теоретическая математика. Значительно сложнее бы­ло построить систему фундаментальных положений математики, в которой бы выявленные Зеноном противоречия не имели бы места. Эту задачу ре­шил Демокрит, разработав концепцию математического атомизма.

Демокрит бал, по мнению Маркса, “первым энциклопедическим умом среди греков”. Диоген Лаерций (III в. н.э.) называет 7О его сочине­ний, в которых были освещены вопросы философии, логики, математики, космологии, физики, биологии, общественной жизни, психологии, этики, педагогики, филологии, искусства, техники и другие. Аристотель писал о нем: “Вообще, кроме поверхностных изысканий, никто ничего не уста­новил, исключая Демокрита. Что же касается его, то получается такое впечатление, что он предусмотрел все, да и в методе вычислений он выгодно отличается от других”.

Вводной частью научной системы Демокрита была “каноника”, в ко­торой формулировались и обосновывались принципы атомистической фило­софии. Затем следовала физика, как наука о различных проявлениях бы­тия, и этика. Каноника входила в физику в качестве исходного разде­ла, этика же строилась как порождение физики. В философии Демокрита прежде всего устанавливается различие между “подлинно сущим” и тем, что существует только в “общем мнении”. Подлинно сущими считались лишь атомы и пустота. Как подлинно сущее, пустота (небытие) есть та­кая же реальность, как атомы (бытие). “Великая пустота” безгранична и заключает в себе все существующее, в ней нет ни верха, ни низа, ни края, ни центра, она делает прерывной материю и возможным ее движе­ние. Бытие образуют бесчисленные мельчайшие качественно однородные первотельца, различающиеся между собой по внешним формам, размеру, положению и порядку, они далее неделимы вследствие абсолютной твер­дости и отсутствия в них пустоты и “по величине неделимы”. Атомам самим по себе свойственно непрестанное движение, разнообразие кото­рого определяется бесконечным разнообразием форм атомов. Движение атомов вечно и в конечном итоге является причиной всех изменений в мире.

Задача научного познания, согласно Демокриту, чтобы наблюдаемые явления свести к области “истинного сущего” и дать им объяснение ис­ходя из общих принципов атомистики. Это может быть достигнуто пос­редством совместной деятельности ощущений и разума. Гносеологическую позицию Демокрита Маркс сформулировал следующим образом: “Демокрит не только не удалялся от мира, а, наоборот, был эмпирическим естест­воиспытателем”. Содержание исходных философских принципов и гносео­логические установки определили основные черты научного метода Де­мокрита:

а) В познании исходить от единичного;

б) Любые предмет и явление разложимы до простейших элементов (анализ) и объяснимы исходя из них (синтез);

в) Различать существование “по истине” и “согласно мнению”;

г) Явления действительности - это отдельные фрагменты упорядо­ченного космоса, который возник и функционирует в результате дейс­твий чисто механической причинности.

Математика по праву должна считаться у Демокрита первым разделом собственно физики и следовать непосредственно за каноникой. В самом деле, атомы качественно однородны и их первичные свойства име­ют количественный характер. Однако было бы неправильно трактовать учение Демокрита как разновидность пифагореизма, поскольку Демокрит хотя и сохраняет идею господства в мире математической закономернос­ти, но выступает с критикой априорных математических построений пи­фагорейцев, считая, что число должно выступать не законодателем при­роды, а извлекаться из нее. Математическая закономерность выявляется Демокритом из явлений действительности, и в этом смысле он предвос­хищает идеи математического естествознания. Исходные начала матери­ального бытия выступают у Демокрита в значительной степени как мате­матические объекты, и в соответствии с этим математике отводится видное место в системе мировоззрения как науке о первичных свойствах вещей. Однако включение математики в основание мировоззренческой системы потребовало ее перестройки, приведения математики в соот­ветствие с исходными философскими положениями, с логикой, гносеоло­гией, методологией научного исследования. Созданная таким образом концепция математики, называемая концепцией математического атомиз­ма, оказалась существенно отличной от предыдущих.

У Демокрита все математические объекты (тела, плоскости, линии, точки) выступают в определенных материальных образах. Идеальные плоскости, линии, точки в его учении отсутствуют. Основной процеду­рой математического атомизма является разложение геометрических тел на тончайшие листики (плоскости), плоскостей - на тончайшие нитки (линии), линий - на мельчайшие зернышки (атомы). Каждый атом имеет малую, но ненулевую величину и далее неделим. Теперь длина линии оп­ределяется как сумма содержащихся в ней неделимых частиц. Аналогично решается вопрос о взаимосвязи линий на плоскости и плоскостей в те­ле. Число атомов в конечном объеме пространства не бесконечно, хотя и настолько велико, что недоступно чувствам. Итак, главным отличием учения Демокрита от рассмотренных ранее является отрицание им беско­нечной делимости. Таким образом он решает проблему правомерности те­оретических построений математики, не сводя их к чувственно воспри­нимаемым образам, как это делал Протагор. Так, на рассуждения Прота­гора о касании окружности и прямой Демокрит мог бы ответить, что чувства, являющиеся отправным критерием Протагора, показывают ему, что чем точнее чертеж, тем меньше участок касания; в действительнос­ти же этот участок настолько мал, что не поддается чувственному ана­лизу, а относится к области истинного познания.

Руководствуясь положениями математического атомизма, Демокрит проводит ряд конкретных математических исследований и достигает вы­дающихся результатов (например, теория математической перспективы и проекции). Кроме того, он сыграл, по свидетельству Архимеда, немало­важную роль в доказательстве Эвдоксом теорем об объеме конуса и пи­рамиды. Нельзя с уверенностью сказать, пользовался ли он при решении этой задачи методами анализа бесконечно малых. А.О.Маковельский пи­шет: “Демокрит вступил на путь, по которому дальше пошли Архимед и Кавальери. Однако, подойдя вплотную к понятию бесконечно малого, Де­мокрит не сделал последнего решительного шага. Он не допускает безг­раничного увеличения числа слагаемых, образующих в своей сумме дан­ный объем. Он принимает лишь чрезвычайно большое, не поддающееся ис­числению вследствие своей огромности число этих слагаемых”.

Выдающимся достижением Демокрита в математике явилась также его идея о построении теоретической математики как системы. В зародыше­вой форме она представляет собой идею аксиоматического построения математики, которая затем была развита в методологическом плане Пла­тоном и получила логически развернутое положение у Аристотеля.


Глава 6

ПЛАТОНОВСКИЙ ИДЕАЛИЗМ


Сочинения Платона (427-347 гг. до н.э.) - уникальное явление в отношении выделения философской концепции. Это высокохудожественное, захватывающее описание самого процесса становления концепции, с сом­нениями и неуверенностью, подчас с безрезультатными попытками разре­шения поставленного вопроса, с возвратом к исходному пункту, много­численными повторениями и т.п. Выделить в творчестве Платона ка­кой-либо аспект и систематически изложить его довольно сложно, так как приходится реконструировать мысли Платона из отдельных высказы­ваний, которые настолько динамичны, что в процессе эволюции мысли порой превращаются в свою противоположность.

Платон неоднократно высказывал свое отношение к математике и она всегда оценивалась им очень высоко: без математических знаний “человек с любыми природными свойствами не станет блаженным”, в сво­ем идеальном государстве он предполагал “утвердить законом и убедить тех, которые намереваются занять в городе высокие должности, чтобы они упражнялись в науке счисления”. Систематическое широкое исполь­зование математического материала имеет место у Платона, начиная с диалога “Менон”, где Платон подводит к основному выводу с помощью геометрического доказательства. Именно вывод этого диалога о том, что познание есть припоминание, стал основополагающим принципом пла­тоновской гносеологии.

Значительно в большей мере, чем в гносеологии, влияние матема­тики обнаруживается в онтологии Платона. Проблема строения матери­альной действительности у Платона получила такую трактовку: мир ве­щей, воспринимаемый посредством чувств, не есть мир истинно сущест­вующего; вещи непрерывно возникают и погибают. Истинным бытием обла­дает мир идей, которые бестелесны, нечувственны и выступают по отно­шению к вещам как их причины и образы, по которым эти вещи создают­ся. Далее, помимо чувственных предметов и идей он устанавливает ма­тематические истины, которые от чувственных предметов отличаются тем, что вечны и неподвижны, а от идей - тем, что некоторые матема­тические истины сходна друг с другом, идея же всякий раз только од­на. У Платона в качестве материи началами являются большое и малое, а в качестве сущности - единое, ибо идеи (они же числа) получаются из большого и малого через приобщение их к единству. Чувственно воспринимаемый мир, согласно Платону, создан Богом. Процесс построе­ния космоса описан в диалоге “Тимей”. Ознакомившись с этим описани­ем, нужно признать, что Создатель был хорошо знаком с математикой и на многих этапах творения существенно использовал математические по­ложения, а порой и выполнял точные вычисления.

Посредством математических отношений Платон пытался охарактери­зовать и некоторые явления общественной жизни, примером чего может служить трактовка социального отношения “равенство” в диалоге “Гор­гий” и в “Законах”. Можно заключить, что Платон существенно опирался на математику при разработке основных разделов своей философии: в концепции “познание - припоминание”, учении о сущности материального бытия, об устройстве космоса, в трактовке социальных явлений и т.д. Математика сыграла значительную роль в конструктивном оформлении его философской системы. Так в чем же заключалась его концепция матема­тики?

Согласно Платону, математические науки (арифметика, геометрия, астрономия и гармония) дарованы человеку богами, которые “произвели число, дали идею времени и возбудили потребность исследования все­ленной”. Изначальное назначение математики в том, чтобы “очищался и оживлялся тот орган души человека, расстроенный и ослепленный иными делами”, который “важнее, чем тысяча глаз, потому что им одним со­зерцается истина”. “Только никто не пользуется ею (математикой) пра­вильно, как наукою, влекущей непременно к сущему”. “Неправильность” математики Платон видел прежде всего в ее применимости для решения конкретных практических задач. Нельзя сказать, чтобы он вообще отри­цал практическую применимость математики. Так, часть геометрии нужна для “расположения лагерей”, “при всех построениях как во время самих сражений, так и во время походов”. Но, по мнению Платона, “для таких вещей ...достаточна малая часть геометрических и арифметических вык­ладок, часть же их большая, простирающаяся далее, должна ...способс­твовать легчайшему усвоению идеи блага”. Платон отрицательно отзы­вался о тех попытках использования механических методов для решения математических задач, которые имели место в науке того времени. Его неудовлетворенность вызывало также принятое современниками понимание природы математических объектов. Рассматривая идеи своей науки как отражение реальных связей действительности, математики в своих ис­следованиях наряду с абстрактными логическими рассуждениями широко использовали чувственные образы, геометрические построения. Платон всячески старается убедить, что объекты математики существуют обо­собленно от реального мира, поэтому при их исследовании неправомерно прибегать к чувственной оценке.

Таким образом, в исторически сложившейся системе математических знаний Платон выделяет только умозрительную, дедуктивно построенную компоненту и закрепляет за ней право называться математикой. История математики мистифицируется, теоретические разделы резко противопос­тавляются вычислительному аппарату, до предела сужается область при­ложения. В таком искаженном виде некоторые реальные стороны матема­тического познания и послужили одним из оснований для построения системы объективного идеализма Платона. Ведь сама по себе математика к идеализму вообще не ведет, и в целях построения идеалистических систем ее приходится существенно деформировать.

Вопрос о влиянии, оказанном Платоном на развитие математики, довольно труден. Длительное время господствовало убеждение, что вклад Платона в математику был значителен. Однако более глубокий анализ привел к изменению этой оценки. Так, О.Нейгебауэр пишет: “Его собственный прямой вклад в математические знания, очевидно, был ра­вен нулю... Исключительно элементарный характер примеров математи­ческих рассуждений, приводимых Платоном и Аристотелем, не подтверж­дает гипотезы о том, что Эвдокс или Теэтет чему-либо научились у Платона... Его совет астрономам заменить наблюдения спекуляцией мог бы разрушить один из наиболее значительных вкладов греков в точные науки”. Такая аргументация вполне убедительна; можно также согла­ситься и с тем, что идеалистическая философия Платона в целом сыгра­ла отрицательную роль в развитии математики. Однако не следует забы­вать о сложном характере этого воздействия.

Платону принадлежит разработка некоторых важных методологичес­ких проблем математического познания: аксиоматическое построение ма­тематики, исследование отношений между математическими методами и диалектикой, анализ основных форм математического знания. Так, про­цесс доказательства необходимо связывает набор доказанных положений в систему, в основе которой лежат некоторые недоказуемые положения. Тот факт, что начала математических наук “суть предположения”, может вызвать сомнение в истинности всех последующих построений. Платон считал такое сомнение необоснованным. Согласно его объяснению, хотя сами математические науки, “пользуясь предположениями, оставляют их в неподвижности и не могут дать для них основания”, предположения находят основания посредством диалектики. Платон высказал и ряд дру­гих положений, оказавшихся плодотворными для развития математики. Так, в диалоге “Пир” выдвигается понятие предела; идея выступает здесь как предел становления вещи.

Критика, которой подвергались методология и мировоззренческая система Платона со стороны математиков, при всей своей важности не затрагивала сами основы идеалистической концепции. Для замены разра­ботанной Платоном методологии математики более продуктивной систе­мой нужно было подвергнуть критическому разбору его учение об идеях, основные разделы его философии и как следствие этого - его воззрение на математику. Эта миссия выпала на долю ученика Платона - Аристоте­ля.


Глава 7

СИСТЕМА ФИЛОСОФИИ МАТЕМАТИКИ АРИСТОТЕЛЯ


К.Маркс назвал Аристотеля (384-322 гг. до н.э.) “величайшим фи­лософом древности”. Основные вопросы философии, логики, психологии, естествознания, техники, политики, этики и эстетики, поставленные в науке Древней Греции, получили у Аристотеля полное и всестороннее освещение. В математике он, по-видимому, не проводил конкретных ис­следований, однако важнейшие стороны математического познания были подвергнуты им глубокому философскому анализу, послужившему методо­логической основой деятельности многих поколений математиков.

Ко времени Аристотеля теоретическая математика прошла значи­тельный путь и достигла высокого уровня развития. Продолжая традицию философского анализа математического познания, Аристотель поставил вопрос о необходимости упорядочивания самого знания о способах усво­ения науки, о целенаправленной разработке искусства ведения познава­тельной деятельности, включающего два основных раздела: “образован­ность” и “научное знание дела”. Среди известных сочинений Аристотеля нет специально посвященных изложению методологических проблем мате­матики. Но по отдельным высказываниям, по использованию математичес­кого материала в качестве иллюстраций общих методологических положе­ний можно составить представление о том, каков был его идеал постро­ения системы математических знаний.

Исходным этапом познавательной деятельности, согласно Аристоте­лю, является обучение, которое “основано на (некотором) уже ранее имеющемся знании... Как математические науки, так и каждое из прочих искусств приобретается (именно) таким способом”. Для отделения зна­ния от незнания Аристотель предлагает проанализировать “все те мне­ния, которые по-своему высказывали в этой области некоторые мыслите­ли” и обдумать возникшие при этом затруднения. Анализ следует прово­дить с целью выяснения четырех вопросов: “что (вещь) есть, почему (она) есть, есть ли (она) и что (она) есть”.

Основным принципом, определяющим всю структуру “научного знания дела”, является принцип сведения всего к началам и воспроизведения всего из начал. Универсальным процессом производства знаний из на­чал, согласно Аристотелю, выступает доказательство. “Доказательством же я называю силлогизм, - пишет он, - который дает знания”. Изложе­нию теории доказательного знания полностью посвящен “Органон” Арис­тотеля. Основные положения этой теории можно сгруппировать в разде­лы, каждый из которых раскрывает одну из трех основных сторон мате­матики как доказывающей науки: “то, относительно чего доказывается, то, что доказывается и то, на основании чего доказывается”. Таким образом, Аристотель дифференцированно подходил к объекту, предмету и средствам доказательства.

Существование математических объектов признавалось задолго до Аристотеля, однако пифагорейцы, например, предполагали, что они на­ходятся в чувственных вещах, платоники же, наоборот, считали их су­ществующими отдельно. Согласно Аристотелю:


Информация о работе «Развитие и взаимное влияние математики, философии и искусства»
Раздел: Философия
Количество знаков с пробелами: 91821
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
51186
0
0

... на развитие математи- ческого познания имеет место и обратное воздействие. ЭЛЕЙСКАЯ ШКОЛА Элейская школа довольно интересна для исследования, так как это одна из древнейших школ, в трудах которой математика и философия до- статочно тесно и разносторонне взаимодействуют. Основными представи- телями элейской школы считают Парменида (конец VI - V в. до н.э.) и Зенона (первая половина V в. до н.э.). ...

Скачать
876227
1
2

... Замечат. С.: Полемон, Герод Аттик, Аристид, Либаний. Ср. Schmid, "Der Atticismus in seinen Hauptvertretern" (1887-97). 17. Принцип детерминизма в философии. Индетерминизм. Детерминизм (от лат. determino - определяю), философское учение об объективной закономерной взаимосвязи и взаимообусловленности явлений материального и ...

Скачать
766403
1
0

... философии - особенно с методо­логических позиций материалистического понимания исто­рии и материалистической диалектики с учетом социокультурной обусловленности этого процесса. Однако в западной философии и методологии науки XX в. фактически - особенно в годы «триумфального шествия» ло­гического позитивизма (а у него действительно были немалые успехи) - научное знание исследовалось без учета его ...

Скачать
670947
1
0

... все содержание посылок, поскольку оно необходимо для вывода, имеет нечувственный характер. (аксиомы, постулаты). VI. Интуитивизм, индивидуалистический эмпиризм и априоризм критической философии в их отношении к теории элементарных методов знания. Три ответа на вопрос о происхождении общих суждений: 1) Путем прямых методов (прямой индукции) = интуитивизм. 2) Общих суждений нет Только иллюзия. ( ...

0 комментариев


Наверх