3.2 Принципы процесса осветления воды в сооружениях.
В практике проектирования и эксплуатации очистных сооружений до последнего времени существовало большое разнообразие в конструкциях осветлителей и методах их расчета. Такое положение явилось следствием экспериментальных поисков наилучшей конструкции при недостаточной разработке теоретических основ технологии осветления воды во взвешенном осадке.
Обобщение накопленного опыта использования осветлителей в конечном счете позволило установить необходимость выполнения следующих трех основных требований.
1) Создание оптимальных условий для формирования взвешенного фильтра и удержания избыточной взвеси. Выполнение этого требования возможно, если обеспечивается преимущественно контактная коагуляция, поддерживается определенная концентрация взвешенного фильтра, создаются необходимые гидравлические условия, исключающие старение, чрезмерное укрупнение и выпадение хлопьев на дно, обеспечивается необходимое время пребывания воды во взвешенном фильтре. В современных осветлителях выполнение этих требований нашло отражение в уменьшении объема зоны распределения (нижней части взвешенного фильтра ), создании условий для непрерывного снижения скорости воды ( наклонные стенки величиной расширения взвешенного слоя в потоке осветляемой воды и концентрацией взвешенного фильтра.
2) Создание оптимальных условий для стабилизации взвешенного фильтра и эффекта осветления воды. Выполнение этого требования осуществляется при помощи принудительного отбора избыточного осадка, создания разности скоростей движения воды на границе между зоной взвешенного фильтра и зоной осветления, обеспечения равномерного сбора осветленной воды. Избыток осадка вместе с частью воды, следующей через взвешенный фильтр, отбирается через окна или трубы из выходной части взвешенного фильтра, а осветленная вода – через систему желобов с затопленными отверстиями или вырезами (водосливами ) в их бортах. Для принудительного движения воды через зону отделения осадка используется перепад уровней на осветлителе и за ним, в сборном кармане.
3) Создание оптимальных условий для отделения, уплотнения и сброса в канализацию избыточного шлама. С этой целью расчетная скорость подъема воды в зоне отделения осадка принимается несколько (на 10 – 15 % ) меньшей по сравнению с расчетной скоростью в зоне осветления. Уплотнение осадка осуществляется в течении 4 – 12 ч ( и на это время рассчитывается рабочий объем осадкоуплотнителя). Угол наклона стенок осадкоуплотнителя к сбросному отверстию или сбросной системе принимается достаточным ( 50-600 ) для сползания уплотнившегося осадка без дополнительного воздействия.
На рисунке 3.1 представлена простейшая схема осветлителя с коническим диффузором.
Вода с реагентами поступает в осветлитель из воздухоотделителя по трубопроводу 1 в нижнюю часть конуса диффузора 2. Поднимаясь вверх, поток воды расширяется, скорость его уменьшается до величины, при которой в диффузоре образуется слой взвешенного осадка 3. По мере накопления осадка его избыток переливается через кромку диффузора и опускается в осадкоуплотнитель 4. Осветленная вода проходит через защитный слой воды над диффузором и по сборному желобу 5 отводится на фильтры. Осадок через дырчатую трубу 6 непрерывно или периодически по трубопроводу 7 отводится в канализацию.
3.3 Основные расчетные формулы и параметры осветлителей.
В технологических схемах осветления воды хозяйственно – питьевых вод изложенные выше требования выполняются в конструкциях с центральными осадкоуплотнителями (рис. 3.3.1. и 3.3.2.)
Основные формулы для расчета осветлителей позволяют определить необходимые площадь осветлителя в плане и объём зон накопления и уплотнения осадка
Площадь зоны осветления в м2 принимается наибольшей из определённых по формулам
(3.3.1)
или
(3.3.2)
где
Кр и К/Р – коэффициенты распределения воды между зонами осветления и отделения осадка для летнего Q0 и зимнего Q/ 0 расчётного расхода осветлителей в м3/ч
vз.о и v/з.о. – соответствующие летнему и зимнему периодам расчётные скорости в зонах осветления мм/сек
Площадь зоны осветления осадка м2 в осветлителях с центральным осадкоуплотнителем
(3.3.3)
где α – коэффициент снижения скорости движения воды в зоне отделения осадка по сравнению со скоростью в зоне осветления принимаемым равным 0,9
Полная площадь осветлителей в м2:
с центральным осадкоуплотнителем
(3.3.4)
с поддонным осадкоуплотнителем
где f отб - суммарная площадь сечения труб в м2 для отбора осадка в осадкоуплотнитель, определяемая в зависимости от расчётной скорости движения воды в трубах, равной vотб.= 40 – 60 мм/сек по формуле
(3.3.5)
Объём зон накопления и уплотнения осадка в м3
(3.3.6)
где
М0 - Максимальное содержание взвешенных веществ в мг/л в воде, поступающей в осветлители;
m - Расчётное содержание взвеси в осветлённой воде, пренимаемое равное 8 -12 мг/л;
ty – время уплотнения осадка: ty= 3 – 6 часов при М0>400мг/л и
ty=6 – 12 часов при М0<400мг/л.
δСР – средняя концентрация взвешенных веществ в осадкоуплотнителе в мг/л.
Основные данные по расчётам по формулам (3.3.1), (3.3.3), (3.3.6) представлено в таблицах (3.3.1) и (3.3.2)
Таблица (3.3.1)
Расчётные скорости осветления и коэффициенты распределения
Мо в мг / л | vз.о в мм / сек | Кр | |
зимой | летом | ||
10 - 100 | 0,7 – 0,8 | 0,9 - 1 | 0,8 – 0,75 |
100 - 400 | 0,8 - 1 | 1 – 1,1 | 0,75 – 0,7 |
400 - 1000 | 1 – 1,1 | 1,1 – 1,2 | 0,7 – 0,65 |
1000 - 2500 | 1,1 – 1,2 | 1,1 – 1,2 | 0,65 – 0,6 |
Мо в мг/л | Средняя концентрация ( δср ) в мг/л при tу в ч | ||||
3 | 4 | 6 | 8 | 12 | |
<100 | 6500 | 7500 | 8000 | 8500 | 9500 |
100 - 400 | 19000 | 21500 | 24000 | 25000 | 27000 |
400 - 1000 | 24000 | 25000 | 27000 | 29000 | 31000 |
> 1000 | 29000 | 31000 | 33000 | 35000 | 37000 |
Полная глубина осветлителей определяется по таблице. Таблица 3.3.3 Высотные размеры осветлителей. |
Параметры | Величина | Примечание |
Глубина зон осветления Нз.о | 1,5 - 2 | 1. При назначении глубин зон меньшие значения следует относить к мутным водам ( Мо ≥ 400 мг/л) |
взвешенного осадка Нз.в Высотные размеры: от плоскости отбора осадка до начала наклонных стенок У1 | 2 – 2,5 1,5 – 1,75 | 2. Глубиной Нз.в считается растояние от плоскости отбора осадка до плоскости, где скорость восходящего потока достигает 2 мм /сек |
Основная формула для определения расчетных расходов осветлителя:
в м3/сут ( 3.3.7 )
где :
Т – время работы осветлителей в течение суток;
Т = 24 ч
tпр – продолжительность в ч продувки одного осветлителя (включая время на подготовку продувки) ;
n – число продувок одного осветлителя в течение суток ;
Кn – коэффициент, определяющий степень снижения выдачи воды продуваемым осветлителем; расчетное значение Кn следует принимать равным единице. Это условие означает, что расчетный продувочный расход Qпр будет равен расчетной подаче на осветлитель и при продувке уровень воды не станет ниже расчетного.
Расчетная продолжительность в часах самой продувки определяется по формуле.
( 3.3.8 )
где
К пр – коэффициент разжижения осадка при его сбросе;
равен 1,2 ;
qпр – продувочный расход в м3/ч ; при Rн = 1 Qпр = Q0 ( расчетной производительности осветлителя ).
Необходимая наименьшая глубина в зависимости от типа осветлителя приближенно может быть определена по формулам:
Н мин = 1,9А > 0,6А + 3 м, (3.3.9 )
где
А – расчетный линейный параметр при определении глубины: ширина полосы зоны осветления, обслуживаемой одной распределительной трубой и двумя сборными трубами (или желобами ) или кольцевым желобом.
Наибольшее значение параметра А – диаметр, радиус или сторона осветлителя, ширина прямоугольной или кольцевой полосы – должно составить (из условия обеспечения равномерного отбора воды ) 3 – 3,5 м, а фактическая величина определяется в результате расчета размеров зоны осветления.
Если в соответствии с высотной схемой можно применить несколько типов, то решающим фактором в выборе одного из них будет величина потребной для их размещения площади, которую можно вписать в стандартную сетку размеров промышленных зданий. Окончательный выбор типа осветлителя в этом случае определяет наименьшее значение необходимой производственной площади.
Для предварительной ориентировки в выборе типа осветлителя может быть использована таблица, в которой приведены приближенные размеры осветлителей в зависимости от общей производительности установки ( в расчетах были приняты : vз.о = 1 мм / сек ; Кр = 0,8 ; Мо = 500 мг / л ; tу = 4 ч ;
Таблица 3.3.4
Вспомогательная таблица к выбору типа осветлителя Qо в м3 / сутки | Основные показатели | Тип осветлителя | |
круглый тип IV | прямоугольный тип V | ||
с центральным осадкоуплотнителем | |||
2000 | N∙ F1 A или A ∙В Н мин | 3∙8 1 ∙3,2 3,6 | 3∙8 1 ∙3; С = 0,6 3,6 |
5000 | N∙ F1 A или A ∙В Н мин | 3∙ 20 1,25∙5 3,75 | 3∙ 20 2∙ 5; С = 1 4,2 |
10000 | N∙ F1 А или А∙В Н мин | 4 ∙30 1,6 ∙ 6,2 4 | 4 30 2 ∙6 ; С = 1,2 4,2 |
где : N – число осветлителей
F1 – площадь одного осветлителя
А – расчетный линейный параметр
В – длина или диаметр осветлителя
С – ширина по верху зоны отделения осадка
... воды в районе г. Сургута в летний период составлял 411 см, а в 1998 г. — 465 см, то общая минерализация — соответственно 152,7 и 130,6 мг/дм3. Общая сумма ионов в воде р. Оби на 20-25 % выше на границе Тюменской области, после впадения р. Вах, притоков в районе г. Сургута; общая минерализация снижается до 105-125 мг/дм3 в районе поселков Белогорье, Перегребное, Казым-Мыс(табл. 1). Таблица 1 ...
... the ecology of the lakes. The results of research entered into the database of ecological condition of reservoirs of Saint-Petersburg area. Суздальские озера находятся в черте города Санкт - Петербурга и являются излюбленным местом отдыха горожан, в связи с чем к качеству воды в этих озерах предъявляются повышенные требования. Нами было проведено исследование воды этих озер на содержание в ней ...
... - мощность ("глубина") безнапорного потока в ненарушенном состоянии и в точке работающей скважины (соответственно), а понижение уровней , получим после простых преобразований: , . Моделирование приречных водозаборов применяется, как правило, для относительно крупных месторождений со сложной геометрией речных контуров и других граничных условий, при существенной неоднородности параметров ...
... организмов в качестве биологического индикатора имеет свои преимущества и недостатки, которые определяют границы ее использования при решении задач биоиндикации. Водорослям принадлежит ведущая роль в индикации изменения качества воды в результате эвтрофирования (заболачивания) водоема. Зоопланктон также достаточно показателен как индикатор эвтрофирования и загрязнения (в частности органического и ...
0 комментариев