2.2. Ефективнiсть сонячних елементiв.

На основi всього вище зазначеного, враховуючи залежнiсть висоти потенцiйного бар'єру вiд ширини забороненої зони напiвпровiдника (чим бiльша ширина забороненої зони, тим бiльша висота потенцiйного бар'єру при однаковому струмi легування i а разподiл числа квантiв в сонячного випромiнювання, можна зробити висновок, що найбiльший коефiцiєнт корисної дiї мають напiвпровiдники з шириною забороненої зони Еg= 1.3(1.5 eV.

Кращим матерiалом рахують з Еg = 1.4 еV, що вiдповiдає максимуму сонячного спектра по числу фотонiв. N = 3.1017 фот/см2с.

(мах = 31%.

Для матерiалiв з Еg бiльше 2еВ ефективнiсть зменшується, так-як використовується мала частина сонячного спектра, для матерiалiв з малим Еg втрачається надмiр енергiї фотона ( hv-Eg ). Таким чином, для створення СЕ пiдходять i широко використовуються матерiали з типiчними напiвпровiдниковими значеннями щiлин.

Значне зростання ( досягається, коли одночасно з концентрацiєю свiтла оптична система здiйснює його спектральне розщеплення. Кожний спектральний дiапазон поглинається потiм окремим сонячним елементом з оптимальним Еg. Перший такий СЕ зроблений у 1978 р. на основi GaAs та Si з (=28%.

Як показано в роботi [13] одним з направлень по зростанню ( - створення багатошарових структур. При цьому мова йде як у послiдовннму з'єднаннi СЕ, так i об ускладненi внутреньої структури СЕ. При послiдовному з'єднанi СЕ у верхньому шарi поглинаються бiльш короткохвильовi фотони, у нижньому -довгохвильовi. При цьому сумарна ефективнiсть бiльше ефективностi кожного iз шарiв, а ЕРС просто складається (якщо не враховувати внутренього опору). Ускладненням внутреньої структури досягається покращення умов поглинання свiтла i зiбрання носiїв - бажано, щоб усi фотозбудженi носiї доходили до електрода. На цьому шляху були отриманi наступнi практичнi розрахунки : абсолютний максимум ( = 31% для СЕ на гетероструктурi на основi GaAs, СЕ на р-n -переходi в GaAs дає 25%, СЕ на р-n -переходi в крiсталiчному Si - 23%, для СЕ на полiкрiсталiчному Si - 17%. Крiм того були створенi тонкоплiвковi багатошаровi СЕ з (=10(12%.

Другим напрямком є максималiзацiя енергiї свiтла, поглинутої в той чи iншiй напiвпровiдниковiй структурi. В даному випадку мова йде про квантовую задачу - мiжзононну поглинаннi свiтла. Рахується, що фотони кожної довжини хвилi поглинаються i генерують електроно-дiркову пару у найбiльш пiдходящому для цього напiвпровiдниковому шарi. Межа (, однак, буде сильно залежати вiд конкретних особливостей конструкцiї СЕ.

Так, для Si при АМО (мак=25%, а при АМ1.5 (мак=29%. При оцiнцi (мак не враховувалась рекомбiнацiя як в об'ємi, так i на поверхнi та границях розподiлу. Формально цi втрати можуть бути врахованi тим, що ефективнiсть збирання фотоносiїв заряду у виразi (1.10) навiть для фотонiв з h(>Еg меньше одиницi та залежить вiд їх енергiї.

Проведений аналiз ВАХ та ККД сонячного елемента справедливий для будь-якої структури напiвпровiдникового фотоперетворювача: р-n перехода, гетероперехода, МДН-структурп чи КМН.

2.3. Загальнi формули для розрахунку ВАХ СЕ р-n переходу.

Виходячi з робот [9, 10] темновi ВАХ сонячних елементiв можуть бути обчисленi за формулою:

де , - струм насичення, , - послiдовний та шунтуючий опори елемента.

Перший доданок описує струм, що йде через дифузiю неосновних носiїв в емiтерi та базi елемента. Другий доданок виникає при потоцi струму, що йде через рекомбiнацiю при стикуваннi з'єднувального шару. Третiй доданок з'являється завдяки потоку струму через паразитний шунтуючий опiр.

Дифузiйний та рекомбiнацiйний струми звичайно використовуються для пояснення темнових ВАХ. Дифузiйний струм характеризується фактором неiдеальностi, який рiвний 1.

Id = Is[ехр(qV/kТ)-1] ~ Тзехр(-Еg(Т)/kТ)

де b - струм насичення. Рекомбiнацiйний струм має вигляд

IRG = IS[ехр(qV/nkТ)-1] ~ Т3/2ехр(-Еg(Т)/2kТ)

де n - фактор неiдеальностi.

Для цих механiзмiв фактор неiдеальностi вiд 1 до 2.

Посилаючись на роботи [9,10] експериментальнi вольт-ампернi характеристики отриманi на мал.4. як видно дiйсно характеризуються двома нахилами, що стверджує справедливiсть двохекспоненцiйна моделi.

Мал.4. Експериментальнi темновi ВАХ.

3. Експерементальнi результати

3.1. Постановка задачi.

Експерементальнi вольт-ампернi характеристики реальних кремнiєвих сонячних елементiв на основi p-n переходу не можна описати тiльки дифузiйним механiзмом проходженням носiїв заряду. Найчастiше для ВАХ застосовують двохдiодну модель, яка крiм дифузiйних струмiв враховує генерацiйно-рекомбiнацiйнi струми, якi контролюють струм при невеликих напругах. Для деяких структур параметр ВАХ n, який характеризує ступiнь зростання струму з напругою, не вiдповiдає жодному з цих механiзмiв i перевищує величину n=2, яка вiдповiдає генерацiйно-рекомбiнацiйному струму. При застосуваннi однодiодної чи двохдiодної моделi припускається, що струм насичення для дифузiйного механiзму є величиною сталою. Мiж тим видно, що при достатньо тонких n- або p- областях. На його величину буде впливати швидкiсть поверхневої рекомбiнацiї на тиловому та фронтальному контактах.

Теоретичнi та експерементальнi розрахунки дослiдження швидкостi поверхневої рекомбiнацiї в контактi метал - напiвпровiдник показали, що ця величина може змiнюватися з напругою, якщо вiдбувається падiння напруги на контактi.

В роботi [14] на основi експерементальних дослiджень спектральної чутливостi показано, що дiйсно, швидкiсть поверхневої рекомбiнацiї на тиловому контактi може змiнюватися з напругою.

Тому в роботi була поставлена задача провести розрахунки темнових та свiтлових ВАХ кремнiєвих сонячних елементiв з урахуванням змiни швидкотi поверхневої рекомбiнацiї на фронтальному та тиловому контактi. Проаналiзувати вплив властивостей цих контактiв (збiднений або збагачений вигин зон) та iнших параметрiв напiвпровiдника на ВАХ.


Информация о работе «Розрахунок вольт-амперної характеристики сонячного елемента при врахуванні зміни поверхневої рекомбі»
Раздел: Физика
Количество знаков с пробелами: 27449
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
312140
1
113

... 4.                 Як графічно позначаються польові транзистори? Інструкційна картка №9 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки» І. Тема: 2 Електронні прилади 2.4 Електровакуумні та іонні прилади Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумово ...

0 комментариев


Наверх