2.2. Графическое определение p-множества

Сначала необходимо построить график.

Для построения графика необходимы следующие данные:

исходные данные:

L1 = x1 - 2x2 + 2,

L2 = x1 + x2 + 4,

L3 = -x1 + 4x2 - 20,

в каноническом виде (после подстановки точки (5;3))

d1 = x1 - 2x2 + 1, (5 - 2*3 + 1= 1)

Dxk d2 = x1 + x2 - 8, (5 + 3 + 4 = 12)

d3  = -x1 + 4x2 - 7, (-5 + 4*3 - 20 = -13)

D = 2x1 + 4x2 – 14,

Находим точки для построения прямых:

1)  d1 = x1 - 2x2 + 1,

-x1 + 2x2 £ 1 (1;1)

2)  d2 = x1 + x2 - 8,

x1 + x2 ³ 8 (0;8)

3)  d3  = -x1 + 4x2 - 7,

-x1 + 4x2 ³ 7 (1;2)

По полученным точкам строим график (рисунок 1). На рисунке штриховкой показан полученный д-конус. Переход к любой точке внутри конуса обеспечивает увеличение всех критериев. Точка (29/3; 16/3) является p-оптимальным решением. Смещая точку х, внутрь д-конуса придем на границу e1. При этом д-конус выйдет из области допустимых решений (ОДР) Dx. Теперь полученная точка не сможет улучшить ни один ч-критерий без ухудшения других, значит она p-оптимальная. Построив д-конус в любой точке стороны e1, убеждаемся, что каждая из точек p-оптимальна, значит вся сторона e1 составляет p-множество.


3.Определение Парето-оптимального множества

с-методом

 

3.1.Удаление пассивных ограничений

Перед построением p-множества из системы ограничений должны быть удалены пассивные ограничения. Пассивным будем называть неравенство (п-неравенство), граница которого не является частью границ области Dx, за исключением, может быть, ее отдельной точки. Неравенства, образующие границы Dx, назовем активными (а-неравенства).

Чтобы грани не были включены в Dxp, не имея никакого отношения к Dxp, неравенство e1 должно быть удалено из исходной системы ограничений. Условием для исключения неравенства ei³ 0 из системы является несовместность (или вырожденность) данной системы неравенств при условии ei = 0. Геометрически это означает, что граница ei = 0 неравенства ei ³ 0 не пересекается с областью Dx или имеет одну общую точку. Если граница ei = 0 имеет общую угловую точку с Dx (вырожденность), то с удалением п-неравенства ei ³ 0 эта точка не будет утеряна, так как она входит в границы других неравенств. Помимо заданных m неравенств проверке подлежат и n условий неотрицательности переменных, так как координатные плоскости (оси) также могут входить в границы Dx.

В качестве примечания можно отметить, что поскольку п-неравенства (пассивные неравенства) для любой точки x Î Dx будут выполнены, то по мере выявления п-неравенств и введения их в базис они удаляются из с-таблицы.

Запишем систему неравенств Dx в форме с-таблицы:

Т1

х1

х2

1

bi/ais

bi/ais

e1

-1 -1 15 15 15

e2

5 1 -1 1/5 1

e3

1 -1 5 - 5

e4

0 -1 20 - 20

Т2

e1

x2

1

 

 

 

Т2

x1

e2

1

х1

-1 -1 15

 

e1

4 -1 14

e2

-5 -4 74

 

x2

-5 1 1

e3

-1 -2 20

 

e3

2 -1 4

e4

0 -1 20

 

e4

1 -1 19

ОП – получен, следовательно ОП – получен, следовательно

х2  и e1 – активные ограничения; x1 и e2 – активные ограничения;

из Т2 получаем:

Т3

e1

e3

1

x1

1 1/2 5

e2

-3 2 34

x2

-1/2 -1/2 10

e4

2 ½ 10

отсюда делаем вывод, что e3 – активное ограничение;

из Т3 получаем:

Т4

e4

e3

1

x1

10

e2

19

x2

15/2

e1

-5

Опорный план не получен, следовательно e4 – пассивное ограничение.


3.2.Определение p-множества с-методом.

При подготовке решения для ЛПР интерес будет представлять информация обо всем множестве p-оптимальных (эффективных) решений Dxp. Графический метод позволяет сформулировать довольно простой подход к определению множества Dxp. Суть этого подхода в следующем. Решая усеченную задачу линейного программирования, устанавливаем факт существования д-конуса ( Dmax > 0). Поскольку для линейных ЦФ конфигурация д-конуса не зависит от положения его вершины х,, то, помещая ее на границу ei области Dx, решаем усеченную ЗЛП с добавлением ei, соответствующего i-му участку границ Dx. Вырождение д-конуса в точку х, будет признаком p-оптимальности и всех других точек данной грани. С помощью с-метода указанная процедура легко проделывается для пространства любой размерности n. Неудобство указанного метода состоит в том, что потребуется на каждой грани ОДР Dx найти точку х, (по числу граней Dx) сформулировать и решить столько же ЗЛП размера Rxn.

Существенно сократить объем вычислений можно путем выбора вершины д-конуса в фиксированной точке х, = (1)n и в нее же параллельно себе перенести грани, составляющие границы Dx

Приведенные к точке х, = (1)n приращения d-r и невязки ei запишутся в виде:

(8)

 

где черта сверху у d, e и D означает, что эти величины приведены к точке х, = (1)n.

По существу, (8) – ЗЛП размера (R+m)xn (D®max), а ее решение позволит найти все грани, составляющие p-множество Dxp.

Составляем с-таблицу, не учитывая пассивные ограничения, т.е e1:


Т1

х1

х2

1

e2

-1 -1 2

e3

5 1 -6

e4

1 -1 0

х1

1 0 -1

х2

0 1 -1

d1

1 -2 1

d2

1 1 -2

d3

-1 4 -3
D 1 3 -4

В начале решается усеченная ЗЛП (под чертой):

Т2

х1

d1

1

e1

-3/2 1/2 3/2

e2

11/2 -1/2 -11/2

e3

1/2 1/2 -1/2

х1

1 0 -1

х2

1/2 -1/2 -1/2

x2

1/2 -1/2 1/2

d2

3/2 -1/2 -3/2

d3

1 -2 -1
D 5/2 -3/2 -5/2

Т3

d3

d1

1

e1

-3/2 -5/2 0

e2

11/2 21/2 0

e3

1/2 3/2 0

х1

1 2 0

х2

1/2 1/2 0

x2

1/2 1/2 1

d2

3/2 5/2 0

x1

1 2 1
D 5/2 7/2 0

Т4

e1

d1

1

d3

0

x2

1

d2

0

x1

1
D -5/3 -2/3 0

e1Î Dxp, так как Dmax = 0.

Данный метод построения множества Dxp обладает недостатком, связанным с разрушением области допустимых решений (ОДР) Dxпри переносе ее граней в х,. Действительно, вершины области Dx в преобразованной модели никак не отражены, а именно одна из них может составить p-множество в случае его совпадения с оптимальным решением. Такое совпадение возможно, если все ч-критерии достигают максимум на одной вершине. Физически это значит, что они слабопротиворечивы – угол при вершине д-конуса приближается к 180° (градиенты ч-критериев имеют практически совпадающие направления). Данный случай имеет место, если в p-множество не вошла ни одна из граней ОДР Dx. Следовательно, p-множество совпадает с оптимальным решением. Для определения p-множества решается обычная ЗЛП с одним из ч-критериев. Если при этом получено множество оптимальных решений, то решается ЗЛП с другим ч-критерием. Пересечение оптимальных решений и является p-множеством. Для ЛПР указание на то, что некоторая грань ei = eip Î Dxp p-оптимальна, является только обобщенной информацией.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.Определение альтернативных вариантов многокритериальной задачи

Наиболее естественным и разумным решением мк-задачи было бы органическое объединение всех ч-критериев в виде единой ЦФ. Иногда это удается сделать путем создания более общей модели, в которой ч-критерии являются аргументами более общей целевой функции, объединяющей в себе все частные цели операции. На практике этого редко удается достигнуть, что, собственно, и является основной причиной появления проблемы многокритериальности. Однако наиболее распространенный подход к решению проблемы пока остается все-таки один: тем или иным путем свести решение мк-задачи к решению однокритериальной задачи. В основе подхода лежит предположение о существовании некой функции полезности, объединяющей в себе ч-критерии, но которую в явном виде, как правило, получить не удается. Получение наиболее обоснованной «свертки» ч-критериев является предметом исследований нового научного направления, возникшего в связи с проблемой многокритериальности - теории полезности. В данной работе будут рассмотрены некоторые подходы, позволяющие получить варианты решения мк-задач при тех или иных посылках и которые лицо принимающее решение (ЛПР) должно рассматривать как альтернативные при принятии окончательного решения и которые, конечно, должны удовлетворять необходимому условию- p-оптимальности.

4.1.Метод гарантированного результата

При любом произвольном решении х Î Dx каждый из ч-критериев примет определенное значение и среди них найдется, по крайней мере, один, значение которого будет наименьшим:

(9)

 

Метод гарантированного результата (ГР) позволяет найти такое (гарантированное) решение, при котором значение «наименьшего» критерия станет максимальным. Таким образом, целевая функция (ЦФ) является некоторой сверткой ч-критериев (9), а МЗЛП сводится к задаче КВП (кусочно-выпуклого программирования) при ОДР Dx, заданной линейными ограничениями.

Исходные условия записываем в каноническом виде:

d1 = х1 - 2х2 - j + 2,

d2 = х1 + х2 - j + 4,

d3 = -х1 + 4х2 - j + 20,

e1 = -х1 - х2 + 15,

e2 = 5х1 + х2 - 1,

e3 = x1 - х2 + 5,

 потом в виде с-таблицы:

Т1

х1

х2

j 1

e1

-1 -1 0 15

e2

5 1 0 -1

e3

1 -1 0 5

d1

1 -2 -1 2

d2

1 1 -1 4

d3

-1 4 -1 20

Вводя в базис переменную j (d1 « j), получаем обычную ЗЛП при максимизации ЦФ j.

Т2

х1

х2

d1

1

e1

-1 -1 0 15

e2

5 1 0 -1

e3

1 -1 0 5
j 1 -2 -1 2

d2

0 3 1 2

d3

-2 6 1 18

Т3

d3

x2

d1

1

bi/ais

e1

1/2 -4 -1/2 6 6/4

e2

-5/2 16 5/2 44 -

e3

-1/2 2 2 14 -
j -1/2 1 -1/2 11 -

d2

0 3 -1 2 -

х1

-1/2 3 1/2 9 -

Т4

d3

e1

d1

1

x2

3/2

e2

68

e3

17
j -3/8 -1/4 -5/8 25/2

d2

13/2

х1

27/2

Решение ЗЛП приводит к конечной с-таблице Т4. Видно, что полученное гарантированное решение х p-оптимально, поскольку введение в базис любой свободной переменной (т.е. ее увеличение) приведет к снижению j - нижнего уровня ч-критериев ("сj < 0). Из таблицы также видно, что решение х0=(27/2; 3/2) находится на грани e4, при этом значения ч-критериев равны (находим по формуле Lr(xr) = j + dr):

L1 = L3 = j = 25/2

L2 = j + d2  = 25/2 + 13/2 = 19

LS = 88/2 = 44

x° = ( 27/2; 3/2)

Если бы в строке j имелись нули, то это означало бы, что одну из соответствующих переменных можно ввести в базис (увеличить без снижения уровня j). Это могло бы привести и к увеличению приращения dr для некоторого ч-критерия, находящегося в базисе.


4.2.Метод линейной свертки частных критериев

Линейная свертка ч-критериев получается как х сумма с некоторыми весовыми коэффициентами mr:

(9)

 

где

(10)

 

Меняя порядок суммирования и вводя обозначения cj и c0, окончательно получим:

(11)

 

Коэффициенты веса обычно получаются путем опроса экспертов из соответствующей предметной области. Поскольку вектор m = (mr) – суть вектор-градиент ЦФ Lm(x), то предполагается, что он указывает направление к экстремуму неизвестной функции полезности. Положительная сторона такого подхода – несложность, не всегда компенсирует его серьезный недостаток – потерю физического смысла линейной свертки разнородных ч-критериев. Это затрудняет интерпретацию результатов, поэтому полученное таким путем решение, следует рассматривать только как возможный (альтернативный) вариант решения ЛПР. Для его сравнительного анализа следует привлекать любые другие варианты и, конечно, значения ч-критериев, получаемые при этом. Иногда при получении свертки ч-критериев предварительно нормируются каким-нибудь способом.

Наиболее приемлемой линейная свертка ч-критериев может оказаться в том случае, когда ч-критерии однородны и имеют единый эквивалент, согласующий их наиболее естественным образом.

На содержательном уровне данная МЗЛП состоит в необходимости принятия такого компромиссного решения (плана выпуска продукции) xk Î Dx, которое обеспечит, по возможности, наибольшую суммарную выручку L1(x) от реализации произведенной продукции; наименьший расход ресурсов i-го вида Lpl (x) (i = 1; m); минимальные налоговые отчисления от прибыли LH(x) (или общей выручки).

Указанные цели носят противоречивый характер, и фактически мы имеем МЗЛП с m+2 –мя ч-критериями (m – количество видов потребляемых ресурсов). ОДР обусловлена ресурсными ограничениями и условиями неотрицательных переменных:

где aij – расход ресурса i-го вида для выпуска 1 единицы продукции j-го вида (j=1,n);

 bi – запас ресурса i-го вида;

ei – остаток ресурса i-го вида при плане выпуска x = (xj)n. Ч-критерии однородны, если они могут быть сведены к единой мере измерения. В качестве такой меры можно взять денежный эквивалент. Тогда m+2 ч-критерия могут быть с помощью линейной свертки сведены к трем:

общая выручка (руб.):

общая экономия ресурсов (руб.):

налоговые отчисления (руб.):

где cj – выручка от реализации 1 ед. продукции j-го вида (цена); si – стоимость (цена) 1 ед. ресурса i-го вида (i = 1;m); Пj – прибыль от реализации 1 ед. продукции j-го вида (j = 1;n); aj – доля (процент налоговых отчислений от прибыли (выручки).

В заключение заметим, что коэффициенты mr не обязательно должны удовлетворять условию (10), но обязательно должны быть положительными, если все ч-критерии максимизируются.

Перейдем к решению:

 

Т1

х1

х2

1

e1

-1 -1 15

e2

5 1 -1

e3

1 -1 5

L1

1 -2 2

L2

1 1 4

L3

-1 4 20

LS

1 3 26

Т2

e1

x2

1

x1

-1 -1 15

e2

-5 -4 74

e3

-1 -2 20

L1

-1 -1 17

L2

-1 0 19

L3

1 5 5

LS

-1 2 41

L1max = 17

L2 max = 19

L3 = 5

LS= 41

Т3

e1

L1

1

x1

28/3

e2

154/3

e3

26/3

x2

17/3

L2

19

L3

-2/3 -5/3 100/3

LS

-5/3 -2/3 157/3

5. Составление сводной таблицы.

 

Окончательное решение сводится в таблицу, где записываются альтернативные варианты:

Метод

х0

L1

L2

L3

LS

Метод гарантированного результата (27/2 ; 3/2) 25/2 19 25/2 44
Метод свертки (28/3;17/3) 0 19 33 1/3

52 1/3

Оптимизация L1

(15;0)

17

19

5 41

Оптимизация

L2, L3

(28/3;17/3) 0 19

33 1/3

52 1/3

xÏDxp

(5;3) 1 12 -13 0

Информация о работе «Решение многокритериальной задачи линейного програмирования»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 20768
Количество таблиц: 22
Количество изображений: 2

Похожие работы

Скачать
158931
0
1

... дискретного программирование для решения задач проектирование систем обработки данных. -  Сформулированы задачи диссертационного исследования. 2. БЛОЧНО-СИММЕТРИЧНЫЕ МОДЕЛИ И МЕТОДЫ ПРОЕКТИРОВАНИЯ СИСТЕМ ОБРАБОТКИ ДАННЫХ В данном разделе рассматриваются общая постановка блочно-симметричной задачи дискретного программирования, её особенности и свойства. Разработан общий подход решения задач ...

0 комментариев


Наверх