1.4 Программируемый кодовый замок
В отличие от ранее опубликованных схем кодовых замков, в данной имеется возможность менять код замка с помощью трех кнопок, т.е. обеспечивается режим достаточно высокой секретности при минимальном количестве кнопок.
Рассмотрим порядок набора (записи) желаемого кода в память замка. Предварительно производится обнуление счетчиков DD6, DD7 кнопкой сброса SB6, после чего в них записывается двухзначный код цифр (О...7) с помощью кнопок (SB4 и SB5).
Индикация набранного кода читается по потухшим светодиодам (VD1...VD6) в двоичном исчислении. Для защиты от дребезга контактов кнопок применяются RS-триггеры на ИМС DD3.
Рассмотрим порядок работы схемы рисунок 4 при открывании замка двери. На пульте двери нажатием кнопки SB2 производится обнуление счетчика DD4. Кнопкой SB1 набирается первая цифра кода (соответствующим количеством нажатий). При правильно набранной цифре на выводе 6 DD10 появляется логический "О", который дает разрешение для набора следующей цифры.
Кнопкой SB3 набирается вторая цифра. На выводе 5 DD11 в случае правильно набранной цифры появляется логическая "1". На входах 3, 4, 5 DD12 устанавливается логическая "1", и запускается ждущий мультивибратор, собранный на ИМС DD13. Он обеспечивает включение электромагнита исполнительного механизма на время 5...6 с.
При открывании двери установленный на ней геркон КМ1 срабатывает, что приводит к разряду конденсатора С1 через открытый транзистор VT1, и электромагнит К1 обесточивается. Выбор времени работы электромагнита производится с помощью R20.
Рисунок 4 - Программируемый кодовый замок
2 Обоснование и выбор схемы РТУ
Эта конструкция смотри рисунок 5 отличается от подобных тем, что на случай попытки открыть дверь посторонними лицами она снабжена звуковой сигнализацией неправильного набора кода. Простота в конструкции.
3 Описание выбранного варианта. Кодовый замок с непрерывной сигнализацией при неправильном наборе кода
Рисунок 5 – схема электрическая принципиальная
При подаче напряжение питания цепь R1C1 устанавливает триггер DD1 в нулевое состояние и на инверсионном выводе 6 микросхемы DD1 - высокий уровень. При одновременном нажатии кнопок SB7- SB9 с этого вывода поступает сигнал на исполнительное устройство, которое состоит из транзисторного усилителя и тягового соленоида, управляющего ригелем замка.
Если код замка набирают не правильно, т.е. нажимают на любую из кнопок SB1-SB6, высокий уровень появляется на выводе 8 микросхемы. Открывается транзистор VS1 и включает звуковой сигнализатор – он выполнен на симметричном мультивибраторе (транзисторы VT1 - VT2), усилителя мощности (VT3) и динамической головке (ВА1) – она и издает звук. Отключают сигнализатор и приводят устройство в исходное состояние нажатием кнопки SB10.
Кнопки SB7- SB9 могут соответствовать любым кнопкам клавиатуры и образовывать соответствующий код, например 196. Кнопки SB1-SB6 – оставшиеся на клавиатуре. Кнопку SB10 устанавливают в потайном месте или, скажем, используют вместо нее, скажем кнопку «0» клавиатуры.
Транзисторы могут быть любые из указанных на схеме серии, тиристор из серии КУ101 с буквенными индексами Г, Е, И, его также можно на однотипный с VT1, VT2 транзистор. Конденсаторы – К50-3 и КМ-6, резисторы - МЛТ, динамическая головка любая со звуковой катушкой сопротивлением 4-8 Ом. Источник питания – выпрямитель или батарея гальванических элементов напряжением 6 В при токе нагрузки не менее 100 мА.
4 Электрический расчет. Расчет автоколебательного мультивибратора и усилителя мощности
Расчета автоколебательного мультивибратора.
Схема для расчета автоколебательного мультивибратора приведена на рисунке 6.
Рисунок 6 – Схема мультивибратора на транзисторах
Исходные данные: амплитуда положительного импульса UKu=12 В, длительность tu1=10 мкс, длительность фронта tф1≤1,0 мкс, длительность среза tc1≤2 мкс, период следования T=40 мкс Rн=2 кОм, максимальная температура окружающей среды t°окр=+40°С.
Выбор типа транзистора. Транзистор выбирается по определенной частоте fh21б=100 (МГц) максимально допустимому напряжению UКБmax=10 (В) и статическому коэффициенту передачи по току h21Э=120. Так как транзистор в схеме мультивибратора работает в ключевом режиме, поэтому выберем широко используемый маломощный высокочастотный транзистор типа КТ315 с параметрами: fh21б=100 (МГц), UКБmax=10 (В), h21Э=120, Iэ=5 (мА), Ik= 20 (мА), UКЭ= 10 (В).
Так как скважность определяется выражением
то транзистор должен иметь коэффициент передачи по току:
Необходимое значение предельной частоты выбираемого транзистора fh21б находится из следующих соображений. Малое значение длительности фронта импульса tф2≈τа≈ τа+RkCk получится в том случае, если постоянная времени заряда емкости С1 отвечает условию RkC1≥(5÷10) τа. Обычно τа≥RkCk, и поэтому принять RkC1≈10τа.
Так как , то . Но и поэтому
Используя выражение для h21Э, после преобразования получаем:
Проведенные расчеты показали правильность выбранного транзистора.
Определим сопротивление резистора по формуле:
,
где ,
Согласно ряду номинальных значений сопротивлений примем значение резистора Rк равным 12 МОм. Для определения типа резистора рассчитаем его мощность рассеяния по формуле P=I2R, поэтому в качестве резистора R можно использовать резистор типа С2-33-0,25-10 12 Мом ± 5%
Ток коллектора насыщения IK нас определяется с учетом температуры окружающей среды по выражению:
Сопротивление резистора Rб определяется из условия режима насыщения открытого транзистора. Поэтому
Проверяем выполнения условия температурной стабильности схемы.
На основании полученного неравенства можно не учитывать влияния обратного тока коллектора на длительность и период следования импульса.
Вычисляем емкости конденсаторов С1 и С2.
Согласно ряду номинальных значений емкостей выберем конденсатор емкостью 330 пФ, следовательно, в качестве С1 можно использовать конденсатор типа К10-17б-Н90-330 пФ ± 10%
Согласно ряду номинальных значений емкостей выберем конденсатор емкостью 1000 пФ, следовательно, в качестве С2 можно использовать конденсатор типа К10-17б-Н90-1000 пФ ± 10%
Проверяем длительность фронта.
Расчет усилителя мощности.
В качестве выбрал транзистор типа КТ815Б, исходя из условия:
Uкэдоп=5 (В) IБ=5 (мА)
Епит=6 (В) Uб=0,6 (В)
Fh21=3 (мГц) Uk=10 (В)
Iko=5 (мА) Rk=2 (кОм)
Uбэ=1,2 (В)
Исходя из данных , найдем величину Rб.
Согласно ряду номинальных значений сопротивлений, выбирают резистор с номинальным сопротивлением Rб=100 (кОм) и рассчитывают его.
Р=I2Rб=0,15 (Вт)≈0,25 (Вт)
Поэтому в качестве Rб выбираем резистор типа С2-33-100 Ом- 0,25 Вт±5%
Рассчитаем величину Rкэ.
Согласно ряду номинальных сопротивлений, выберем резистор с сопротивлением RКЭ=1 (кОм), и рассчитаем его P=I2Rкэ≈0,125 (Вт), выберем резистор типа С1-22-1 кОм-0,125 Вт±10%.
Рассчитаем величину Ik, проходящего динамик ВА1.
Таким образом.
Все элементы схемы рассчитаны, выбраны их типы, следовательно, можно считать расчет законченным.
... і виконавчий пристрій бажано живити постійним струмом напругою 24...60 В. Мал.1.2 КТ КДПУ КП. 19.00.000.ПЗ Арк 6 Зм. Арк № Докум Підпис Дата Описані вище конструкції кодови замків мають ряд недоліків, серед яких є дуже суттєві. Для першої схеми ряд недоліків має вигляд: Занижена захисна здатність замку від ...
... «интеллектуального здания» в значительной мере зависит от требований заказчика. Однако подобного рода разработки требуют не только больших временных затрат, но и финансовых вливаний. Разрабатываемый кодово-сенсорный замок в какой-то степени позволяет не допускать бесконтрольного посещения какого-либо объекта. 2. ВЫБОР И ОБОСНОВАНИЕ СТРУКТУРНОЙ СХЕМЫ 2.1. Источник питания Структурная ...
... быть крупная надпись «Огнеопасно! С огнем не входить! Курение в помещении запрещается». 2. Особенности обнаружения угроз на открытых площадках и периметрах объектов. Тактика применения радиоволновых извещателей. Состав технических средств охраны для блокировки периметров территорий охраняемых объектов выбирают в зависимости от ожидаемого характера нарушения, рельефа местности, протяженности и ...
... . Подставляя значение Н в (8.6), получим м. Округляем значение до L = 0,135 м. Полученные значения размеров ЛП соответствуют размерам корпуса блока управления электромеханическим замком, полученным в результате компоновочного расчета 9 Мероприятия по защите от коррозии, влаги, электрического удара, электромагнитных полей и ...
0 комментариев