3.3   Определение потерь в сегнетоэлектрике при комнатной температуре.

Устанавливая поочередно на входе цепи напряжение 60, 80, 120 В зарисовать на кальку осциллограммы петли гистерезиса. В табл. 6.3 занести координаты вершин гистерезисных циклов.

Таблица 6.3

Измерения Расчет

U

xm

ym

SQU

Um

Qm

Pг

tg d
В мм мм

мм2

В мкКл мВт
60
80
120
4. Оформление отчета

1.    Привести схему экспериментальной установки, данные измерительных приборов и исследуемого элемента.

2.    Оформить таблицы с результатами измерений и вычислений. При вычислении Um и Qm использовать координаты вершин осциллограмм гистерезисного цикла с учетом масштабов по осям осциллографа (табл. 6.1). Площадь гистерезисного цикла SQU (табл. 6.3) определяется непосредственно по осциллограммам путем подсчета числа квадратных миллиметров (по миллиметровой бумаге), укладывающихся внутри петли.

3.    По данным табл. 6.2 построить основную кривую поляризации D(E) и график зависимости относительной диэлектрической поляризации от напряженности электрического поля er(Е).

4.    Привести осциллограммы гистерезисных циклов для трех значений напряжения на сегнетоэлектрическом конденсаторе.

5.    Дать краткие выводы по работе.

Контрольные вопросы

1.    Что называют сегнетоэлектриками? Какие материалы обладают сегнетоэлектрическими свойствами?

2.    Что такое диэлектрическая проницаемость, как ее можно практически определить?

3.    Почему диэлектрическая проницаемость сегнетоэлектриков значительно превышает проницаемость обычных диэлектриков и зависит от напряженности внешнего электрического поля?

4.    В чем причина возникновения гистерезиса при поляризации сегнетоэлектриков?

5.    Как происходит процесс поляризации сегнетоэлектриков?

6.    Почему вольтамперная характеристика сегнетоэлектрических конденсаторов нелинейна?

7.    Какими параметрами характеризуют потери мощности в диэлектриках?

8.    Как и почему зависит диэлектрическая проницаемость сегнетоэлектриков от температуры?

9.    Как получить на экране осциллографа кулон-вольтную характеристику?

10.   Назовите области применения сегнетоэлектриков.

Работа 7. Исследование свойств ферромагнитных материалов

Цель работы – экспериментальное подтверждение основ­ных теоретических положений, определяющих физические процессы, происходящие в ферромагнитных телах при их периодическом перемагничивании; приобретение практических навыков в определении потерь в ферромагнетике, их разделе­нии, снятии основной кривой намагничивания B(H) и оценке магнитных характеристик материала.

1. Краткие сведения из теории

Ферромагнитные материалы (Fe, Ni, Co и их сплавы) обладают особыми магнитными свойствами: высокое значение относительной магнитной проницаемости и ее сильная зависимость от напряженности внешнего магнитного поля, при перемагничивании наблюдается магнитный гистерезис, обусловленный наличием доменов – областей спонтанной намагниченности.

Основной причиной магнитных свойств вещества являются внутренние скрытые формы движения электрических зарядов в его атомах – вращение электронов вокруг собственных осей (спиновый магнитный момент) и вокруг ядра (орбитальный магнитный момент). У ферромагнетиков даже при отсутствии внешнего магнитного поля имеются домены с параллельной или антипараллельной ориентацией спинов электронов. Такое вещество находится в состоянии спонтанного (самопроизвольного) намагничивания. В различных доменах эта ориентация различна. Если материал не подвергается воздействию внешнего магнитного поля, суммарный магнитный момент всех доменов и магнитный поток такого тела во внешнем пространстве равны нулю.

При намагничивании внешним магнитным полем происходит поворот векторов магнитных моментов доменов в направлении поля и смещение границ доменов. С увеличением напряженности поля этот процесс замедляется (явление насыщения).


При периодическом перемагничивании ферромагнитного материала наблюдается явление магнитного гистерезиса, т. е. отставание изменения магнитной индукции от изменения напряженности поля. На рис. 7.1 показаны гистерезисные диаграммы при различных предельных значениях напряженности внешнего магнитного поля. Кривая, проходящая через вершины этих диаграмм, называется основной кривой намагничивания B=f(H). Гистерезисный цикл, при котором достигается насыщение ферромагнитного материала, называется предельным. По нему определяется остаточная индукция Вr (при H = 0) и коэрцитивная сила Нc (при B = 0).

Способность материала к намагничиванию характеризуется абсолютной магнитной проницаемостью m = В/Н . (7.1)

На рис. 7.2 показана основная кривая намагничивания B=(H) и зависимость абсолютной магнитной прони­цаемости от напряженности внешнего магнитного поля. При определенной величине напря­женности m достигает максимума. Точка а, характеризую­щая этот режим, соответ­ствует касательной Оа, проведенной к основной кривой намагничивания из начала координат. Проницаемость, опреде­ленную в очень слабых полях, называют началь­ной (mн).

Одновременному намагничиванию ферромаг­нитных материалов по­стоянным и переменным полем малой ампли­туды Нт со­ответствует частный гистерезисный цикл с вер­шинами /—2, лежащими на основной кривой намагничивания (см. рис. 7.2). При этом реверсивная (обратимая) проницаемость определяется положением вершин этого цикла:

где МB, МH – масштабы по осям координат, a – угол наклона к оси абсцисс прямой, соединяю­щей вершины частного гистерезисного цикла. Аналогично определяется дифференциальная магнитная проницаемость:  (7.2)

где b – угол наклона касательной к основной кривой намагничивания в искомой точке.

Для всех упомянутых проницаемостей чаще всего опреде­ляется их относительные значения

 (7.3)

где mо = 4p×10-7 Гн/м – магнитная постоянная.

Материалы с узкой петлей гистерезиса (Hc £ 1 кА/м) называют магнит­омягкими, материалы с широкой петлей – магнитотвердыми.

При перемагничивании ферромагнитных материалов в них возникают потери на гистерезис и вихревые токи. При посто­янной амплитуде индукции (Bm= const) потери на гистерезис пропорциональны час­тоте, а потери на вихревые токи – квадрату частоты:   Измерив в этих условиях суммарные магнитные потери Pм1 и Рм2 при двух различных частотах, можно определить постоянные

 (7.4)

Для выполнения условия Вm= сопst необходимо дейст­вующее значение напряжения намагничивающей катушки изменять пропорционально частоте (U1/f = const).

Суммарные магнитные потери могут быть определены по площади  динамической вебер-амперной диаграммы y(i):

(7.5)

где Mi, My – масштабы, принятые по осям координат.

Параллельная ориентация спинов в магнитных доме­нах имеет место только ниже определенной для данного ферромагнетика температуры – точки Кюри. При превышении этой температуры спонтанная намагниченность исчезает, и магнитная проницаемость резко падает.

2. Описание экспериментальной установки

Схема установки для исследования свойств ферромагнитных материалов приведена на рис. 7.3.

Схема питается от задающего генератора. Исследуемый ферромагнетик представляет собой тороидальный магнитопровод с двумя обмотками. Последовательно с намагничивающей обмоткой w1 включено небольшое сопротивление R1, напряжение на кото­ром, пропорциональное току i1, подается на горизонтальные пластины осциллографа и на вольтметр V1. На зажимы измерительной обмотки w2 включена интегрирующая цепочка с большим сопротивлением R2 и большой емкостью С. В схеме выбрано поэтому

(7.6)

где S – сечение сердечника, kо – постоянная, y1 – потокосцепление обмотки w1.

Таким образом, на экране осциллографа можно наблюдать вебер-амперную характеристику y1(i). При этом масштабы по осям:

   (7.7)

где Dx, Dy – размах осциллограммы по горизонтали и вертикали соответственно.

Для измерения напря­жений на резисторе R1 и на вторичной обмотке w2 применены цифровые вольтметры с большим входным сопротивлением.

3. Порядок выполнения работы

3.1     Определение масштабов осциллографа Mi, Мy и магнитных потерь на частоте f = 50 Гц.

Установить на входе цепи напряжение частотой 50 Гц, при котором на экране осциллографа наблюдается предельный гистерезисный цикл (когда дальнейшее увеличение входного напряжения не вызывает значительного роста индукции). Регулировкой усиления верти­кального и горизонтального каналов осциллографа добиться, чтобы диаграмма заняла не менее 2/3 экрана. Занести в табл. 7.1 показания вольтметров V1, V2 и размах осциллограммы по горизонтали и вертикали, зарисовать осциллограмму на кальку. Площадь гистерезисного цикла Syi определяется непосредственным подсчетом числа квадратных миллиметров (по миллиметровой бумаге), укладывающихся внутри петли.

Таблица 7.1

Измерения Расчет Примечание

f

U1

U2

Dx

Syi

Мi

My

I

y

Pст

w1 = витков

w2 = витков

D = мм

d = мм

h = мм

R1 = Ом

R2 = кОм

Гц В В мм мм

мм2

мА/мм Вб/мм мА Вб мВт
50
400

Информация о работе «Электрорадиоматериалы. Методические указания к лабораторным работам»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 54439
Количество таблиц: 17
Количество изображений: 20

0 комментариев


Наверх