3. Проблема соотношения “компьютерного” и “человеческого” мышления.

“Машинное” и человеческое мышление существенным образом различаются. Если машина “мыслит” только в двоичной системе, то мышление человека значительно многостороннее, шире и богаче. Как использовать компьютер, чтобы развить у учащихся человеческий подход к мышлению, а не привить ему некий жесткий алгоритм мыслительной деятельности?

Процесс внедрения информационной технологии в обучение школьников достаточно сложен и требует фундаментального осмысления. Применяя компьютер в школе, необходимо следить за тем, чтобы ученик не превратился в автомат, который умеет мыслить и работать только по предложенному ему кем-то (в данном случае программистом) алгоритму. Для решения этой проблемы необходимо наряду с информационными методами обучения применять и традиционные. Используя различные технологии обучения, мы приучим учащихся к разным способам восприятия материала: чтение страниц учебника, объяснение учителя, получение информации с экрана монитора и др.. С другой стороны, обучающие и контролирующие программы должны предоставлять пользователю возможность построения своего собственного алгоритма действий, а не навязывать ему готовый, созданный программистом. Благодаря построению собственного алгоритма действий ученик начинает систематизировать и применять имеющиеся у него знания к реальным условиям, что особенно важно для их осмысления.

4.Проблема создания виртуальных образов.

Работая с моделирующими ППС, пользователь может создавать различные объекты, которые по некоторым параметрам могут выходить за грани реальности, задавать такие условия протекания процессов, которые в реальном мире осуществить невозможно. Появляется опасность того, что учащиеся в силу своей неопытности не смогут отличить виртуальный мир от реального. Поэтому, во избежание возможного отрицательного эффекта использования информационной технологии в процессе обучения школьников, при разработке ППС, содержащих элементы моделирования, необходимо накладывать ограничения или вводить соответствующие комментарии (например, “В реальных условиях ваша модель не может существовать” и т.п.), чтобы ученик не мог “уйти” за грани реальности в результате манипулирования химическими явлениями. Виртуальные образы, наряду с опасностью создания нереальных ситуаций, могут сыграть положительную дидактическую роль. Информационная технология позволит учащимся осознать модельные объекты, условия их существования, улучшая, таким образом, понимание изучаемого материала и, что особенно важно, их умственное развитие. Следует отметить, что компьютер, как педагогическое средство, используется в школе, как правило, эпизодически. Это объясняется тем, что при разработке современного курса химии не стоял вопрос о привязке к нему информационной технологии. Применение компьютера, поэтому, оказывается целесообразным лишь при изучении отдельных тем (химическое равновесие, синтез веществ, скорость реакции и др.), где имеется очевидная возможность вариативности. Для систематического использования информационной технологии в процессе обучения необходимо переработать (модернизировать) весь школьный курс химии.

Анализ исследований по проблеме применения информационной технологии в процессе обучения показал, что пока еще мало внимания уделено вопросам рассмотрения основных форм сочетания традиционной и информационной технологий обучения. Именно этому и посвящена первая глава диссертации; сделан вывод, что важным методическим принципом применения компьютерных программ является их совместимость с традиционными формами обучения. При планировании уроков необходимо найти оптимальное сочетание таких программ с другими (традиционными) средствами обучения. Наличие обратной связи с возможностью компьютерной диагностики ошибок, допускаемых учащимися в процессе работы, позволяет проводить урок с учетом индивидуальных особенностей учащихся. Контроль одного и того же материала может осуществляться с различной степенью глубины и полноты, в оптимальном темпе, для каждого конкретного человека. Таким образом, мы предполагаем, что информационную технологию наиболее целесообразно применять для осуществления предварительного контроля знаний, где требуется быстрая и точная информация об освоении знаний учащимися, при необходимости создания информационного потока учебного материала или для моделирования различных химических объектов.

Поскольку педагогические программные средства ориентированы на достижение поставленных преподавателем учебных целей, они должны разрабатываться с учетом предъявляемых к ним психолого-педагогических, эргономических, эстетических и конструтивно-технических требований (схема 1). Из перечисленных выше требований мы выбрали те, которые, на наш взгляд, изучены недостаточно полно, но являются весьма существенными: отбор информации и конструирование ППС, организация деятельности учащихся, формы предъявления информации.


Общие требования



психолого- эргономические эстетические конструктивно-

педагогические технические


отбор расположение выразительность конструктивная

материала информации универсальность


организация использование сопроводи-

деятельности текста целостность тельная до-

учащихся кументация


адаптивность представление кадры- эффективность

информации заставки труда препод.

формы применение эффективность

предъявления изображений труда учащегося

информации


организация

взаимодействия

учащегося с ЭВМ


оценка

результатов


Схема 1. Структура общих требований, предъявляемых к обучающе-контролирующим программным средствам


Проведенные в первой главе исследования позволили, во-первых, доказать необходимость пересмотра традиционных и разработки новых методик обучения с использованием ПЭВМ; во-вторых, для повышения качества обучения при использовании информационной технологии необходимо учитывать возникающие при этом психолого-педагогические и методические проблемы; в-третьих, обучающе-контролирующие программы должны отвечать всем требованиям, предъявляемым к учебному программному обеспечению.

Во второй главе “Типы обучающе-контролирующих ППС” рассматривается структура и проводится сравнительный анализ отечественных программ контролирующего и моделирующего типов с учетом их достоинств и недостатков; показано строение и основные функциональные возможности автоматизированной системы обучения и контроля; даны методические рекомендации по созданию обучающе-контролирующих программ.

При выборе ППС для реализации различных учебных задач необходимо учитывать их тип и структуру. Известно, что структура ППС зависит от его назначения. Так, основной функцией обучающей программы является обучение, контролирующей - контроль, а ППС обучающе-контролирующего типа совмещают в себе обе эти функции. Нами были подробно рассмотрены обучающие и контролирующие функции ППС, а также их структура. Обучающие ППС (схема 2) предполагают наличие двух составляющих: демонстрационной, выводящей на экран информацию согласно заранее разработанного сценария и имитационно-моделирующей, позволяющей пользователю управлять динамикой изучаемого процесса. Демонстрационная часть программы предполагает, что все числовые данные и варианты ответов, а также художественные образы и графики, заложены разработчиками в компьютерную программу. Работая с этой частью программы, пользователь (учитель, ученик) в процессе демонстрации уже не имеет возможности включаться в технологический процесс и управлять им. Все (изменение параметров, скорость протекания реакции и т.д.) должно быть учтено на этапе составления такой программы и ее использование наиболее целесообразно при объяснении нового материала (лекции, семинары).

С методической точки зрения наибольший интерес представляет имитационно-моделирующая составляющая часть программы (правая часть схемы 2), которая позволяет ученику как бы “погрузиться” в изучаемый процесс, меняя те или иные его параметры, управлять этим процессом и достигать желаемые результаты. Здесь наиболее ярко проявляется присущая исключительно компьютеру обучающая функция программы.

Анализ отечественных и зарубежных ППС обучающе-контролирующего типа позволил выявить имеющиеся в них положительные и отрицательные моменты. К основным недостаткам можно отнести следующие: большинство разработанных ППС предназначены для изучения отдельных тем или разделов учебника, не учтены общедидактические и общепедагогические задачи, слабо развиты эффективные системы самоконтроля, отсутствует информационный поток знаний. К достоинствам следует отнести наличие редактора справочной информации, открытой (сопряженной с графическим редактором) библиотеки графических фрагментов, режима произвольно регулируемой лупы для корректировки деталей изображения и др.

Нами при разработке ППС проведены теоретические расчеты выхода продукта реакции, выведены формулы, отражающие выход продукта реакции от температуры, давления и концентрации реагирующих веществ, которые впоследствии были согласованы с элементами моделирования по теме “Синтез аммиака. Химическое равновесие”; описана технология создания контролирующей части программы в автоматизированной системе подготовки преподавателем обучающих и контролирующих программ для ПЭВМ. Таким образом, для успешной реализации различных учебных задач необходимо учитывать структуру и тип ППС, а задания для компьютерных программ контролирующего типа должны отличаться четкостью и конкретностью, исключающими ошибочные представления о знаниях контролируемого ученика.


Запуск программы и заставка


Меню выбора

(установочный блок)


Демонстрационная составляющая: мультфильмы, справочные материалы, химические и математические формулы и т.д. согласно заранее разработанному сценарию

Имитационно-моделирующая составляющая


Задание. Ввод данных

НЕТ

Обработка данных

ДА

Моделирование и вывод

на экран


Формирование заключительных

кадров



Сообщение ученику

Сообщение учителю

(статистика)


Схема. 2. Структура обучающей функции ППС.


В третьей главе “Методические аспекты сочетания традиционной и информационной технологий в обучении” приводятся результаты анализа внедрения компьютерной технологии в процесс обучения школьников и перспективы использования ЭВМ при изучении химии. Целесообразность применения информационной технологии в обучении химии не вызывает сомнений, но эффективность этого технического средства значительно повышается, если его использование будет не эпизодическим, а систематическим, на протяжении всего курса. К сожалению, при разработке традиционного курса химии не предполагалось использование информационной технологии, в связи с чем необходимо было разработать критерии отбора учебных тем, которые целесообразно изучать с применением информационной технологии. Критерии отбора учебных тем по химии для компьютерного обучения можно сформулировать следующим образом: учебный материал темы должен способствовать созданию информационного потока, используемого как для вывода теоретического знания, так и его применения; содержание темы должно предполагать возможности управления учащимися моделями химических объектов. Эти критерии, а также анализ школьных учебников для компьютеризированного курса, позволяют отобрать учебные темы традиционного курса, изучение которых можно проводить с использованием ПЭВМ.

Разработка специального учебного компьютерного курса выдвигает новые требования к отбору содержания, позволяющие формировать целенаправленные учебные информационные потоки. Критерии отбора содержания для такого курса можно свести к следующим положениям: 1) отбираемое содержание должно способствовать созданию потока информации; 2) отбираемый материал должен быть адаптирован для учащихся соответствующего возраста; 3) отбираемый материал должен включать различные виды наглядности; 4) отбираемое практическое содержание должно способствовать построению моделей объектов разного рода и выявлению закономерностей их функционирования; 5) конструкция содержания должна способствовать классификации и систематизации потока информации, предъявляемой учащимся.

Под термином “информация” мы подразумеваем:

- учебное сообщение, осведомление о различных явлениях, условиях их протекания, закономерностях и т.п., воспринимаемое и осознаваемое учащимися.

Понятие “информация” мы отличаем от понятия “информационный поток”. При этом мы различаем два вида информационного потока:

первый вид - это совокупность материальных объектов (явлений, процессов), которые необходимо проанализировать и систематизировать ученику для уяснения изучаемого материала. Например, различные смеси веществ, формулы веществ различных классов и т.п.;

второй вид - это набор различных условий и параметров, которые подбираются (задаются, вводятся учеником или учителем, программистом) с целью получения определенного результата (выполнения задания) компьютерного эксперимента. Например, выбор оптимальных условий синтеза вещества, условия смещения равновесия, изменение скорости реакции и т.п. Под информационной технологией обучения мы понимаем такую технологию, при которой учащиеся должны работать с мощным специализированным потоком учебной информации, получаемой с помощью компьютерной технологии и ППС.

При изучении химии используются различные наглядные средства, но с внедрением компьютерной технологии представляло интерес произвести классификацию этих средств обучения и дать их подробную характеристику (схема 3).

Наглядность I рода - это все то, что учащиеся видят непосредственно в результате проведения реальных химических экспериментов (изменение цвета раствора, выделение газа, образование осадка и т.п.), а также внешний и внутренний облик зданий, цехов различных химических производств и т.п.

Наглядность II рода - это символьная (модельная) запись проводимых или демонстрируемых химических процессов и явлений, запись с помощью символов химических элементов различных химических превращений (реакций), графическое отображение образования и разрушения химических связей, строение молекул, атомов и т.п.

Наглядность III рода - это мультимедийная наглядность, которая позволяет не только сочетать в динамике наглядности I и II рода, но и значительно расширить и обогатить их возможности введением фрагментов мультимедиа благодаря использованию информационной технологии. Отличительной особенностью III типа наглядности является возможность объединения реального химического объекта и его сущности на разных уровнях. Наряду с этим компьютер предоставляет возможность пользователю (ученику или учителю) активно подключаться к демонстрациям, ускоряя, замедляя или повторяя, по мере необходимости, изучаемый материал, управлять и моделировать сложными химическими процессами, систематизировать, классифицировать и фиксировать на экране монитора необходимую информацию и т.п.


Наглядные средства


Наглядность I рода Наглядность II рода


Наглядность III рода


Схема 3. Классификация наглядных средств.

Из классификации наглядных средств и предложенных выше определений видно, что наглядность III рода позволяет с высокой эффективностью изучать и моделировать химический объект и условия его существования, способствует повышению умственного развития учащихся.

Таким образом, очевидно, что применение информационной технологии в процессе обучения химии по традиционным программам возможно лишь эпизодически, при изучении отдельных тем. Для более полного и систематического применения информационной технологии в процессе обучения химии необходимо переработать школьные программы в соответствии с учетом возможностей компьютера и разработанных нами критериев отбора и структурирования содержания. При работе с компьютерными программами следует различать термины “информация” и “поток информации”. Обучение учащихся в среде потока учебной информации и является информационной технологией обучения.

Четвертая глава “Экспериментальная проверка эффективности информационной технологии обучения в химии” посвящена описанию педагогического эксперимента и анализу его результатов.

Цель эксперимента состояла в выявлении возможности восприятия учащимися потока учебной информации (в условиях информационной технологии обучения) и его эффективности в процессе обучения химии. Очевидно, что успешность использования информационной технологии во многом зависит от того, насколько свободно учащиеся владеют компьютером. Поэтому первой задачей эксперимента мы считали оперативное обучение учащихся использовать его в своей учебной деятельности. Вторая задача эксперимента состояла в изучении возможностей усвоения учащимися материала в условиях использования информационной технологии обучения. В ходе проведенного эксперимента было выявлено, что первый сеанс работы с обучающе-контролирующей программой является для большинства учащихся довольно тяжелым. Напряжение первого общения с обучающе-контролирующей программой в значительной степени снимается при последующих контактах с ЭВМ. У учащихся лучше регулируется внимание, стабилизируется время отработки вопроса, уменьшается число механических ошибок при использовании клавиатуры.

Систематическое применение компьютера в учебном процессе является первоочередной задачей эффективного использования ПЭВМ в обучении.

Для определения эффективности разработанной методики использования обучающе-контролирующих программ с элементами моделирования по разработанному нами курсу химии был проведен сравнительный анализ выполнения контрольной работы по теме “Химическое равновесие. Принцип Ле-Шателье” (табл. 1 и схема 4).

Таблица 1.

оценка экспериментальная группа контрольная группа
“отл” 6 чел. - 20,7% 4 чел. - 14,8%
“хор” 12 чел. - 41,4% 8 чел. - 29,6%
“удовл” 11 чел. - 37,9% 15 чел. - 55,6%
“неудовл” - -

Схема 4. Результаты выполнения итоговой контрольной работы в экспериментальной и контрольной группах


Показатели сформированности знаний о химическом равновесии.

Перечень знаний, которые должны были показать учащиеся при выполнении заданий:

- понятие химического равновесия,

- принцип Ле Шателье,

- способы смещения химического равновесия,

- умение применять знания о закономерностях протекания реакций для объяснения оптимальных условий осуществления химических процессов.

Таким образом, результаты педагогического эксперимента показали, что, во-первых, учащиеся довольно быстро обучаются использовать компьютер в учебной деятельности. Во-вторых, использование информационной технологии позволяет повысить качество обучения, сделать его более полным, наглядным и доступным. Наличие устойчивой обратной связи в цепи “преподаватель-ученик” позволяет своевременно выявлять и устранять пробелы в знаниях учащихся, что способствует повышению успеваемости. Организация контроля с помощью предложенных нами обучающе-контролирующих компьютерных программ является достаточно эффективной, а сами программы соответствуют требованиям, предъявляемым к программному обеспечению. Разработанная методика их использования позволяет значительно повысить уровень успеваемости учащихся по химии за счет индивидуализации процесса контроля знаний.

Результаты педагогического эксперимента подтвердили справедливость гипотезы исследования и показали эффективность предлагаемого методического подхода применения информационной технологии обучения при его сочетании с традиционными средствами обучения.

Выводы.

Основные результаты исследования сводятся к следующему:

Уточнены понятия “поток учебной информации” и “информационная технология обучения”.

Определена роль и место использования информационной технологии в курсе химии, а также возможные варианты ее сочетания с традиционной технологией обучения при решении теоретических, практических и контролирующих вопросов курса.

Сформулированы критерии отбора учебных тем при работе по традиционному курсу химии. Наряду с этим разработаны критерии отбора и конструирования содержания для учебного курса, преподавание которого предполагается с использованием информационной технологии. Разработан фрагмент учебной программы такого курса.

Разработаны обучающе-контролирующие программы по отдельным темам школьного курса химии.

Предложена методика проведения уроков с использованием информационной технологии.

Разработаны требования отбора вопросов для компьютерного контроля и их совокупность. Эти задания позволяют осуществлять как текущий контроль знаний учащихся, так и эффективность разработанной нами обучающе-контролирующей программы.

Экспериментально подтверждена эффективность разработанной методической системы применения информационной технологии в процессе обучения химии, которая выразилась в овладении учащимися работы с информационным потоком, предложенным компьютером, в достижении ими более высоких результатов при осуществлении пооперационного, итогового контроля и приобретении более качественных знаний по химии по сравнению с учащимися контрольных классов.

Основное содержание диссертации отражено в следующих публикациях:

Программа по курсу “Физическая и коллоидная химия” для специальности 004 “Химия и экология”. - Москва: МПУ, - 1996 г. (в соавт.)

Программа по курсу “Концепции современного естествознания” для студентов гуманитарных факультетов. - Москва: МПУ, - 1996 г. (в соавт.)

Практикум по общей химии. - Москва: Экомир, -1997 г. , 116 с. (в соавт.)

Открой для себя мир химии. Часть 1. Общая и неорганическая химия. -Москва: Экономир, - 1997 г., 376 с. (в соавт.)

Использование среды MV для моделирования демонстрационных экспериментов на уроках химии. - Тезисы научной конференции преподавателей, аспирантов и студентов МПУ. Апрель, 1997 г., Москва, с.33. (в соавт.)

MV на уроках химии. Информатика и образование, 1997 г., №4, с.52. (в соавт.)

Словарь школьника по химии. 8-11 классы. - М., “Дрофа”, в печати, 1998 г. (в соавт.)

Методические аспекты применения информационной технологии в процессе обучения химии. - Тезисы научной конференции преподавателей, аспирантов и студентов МПУ. Апрель, 1998 г., Москва. (в соавт.)

Компьютер как средство повышения эффективности интегративного подхода к обучению химии. - Материалы XLV Герценовских чтений (Всероссийской научно-практической конференции) 13-16 мая 1998г., С.-Петербург, с.43. (в соавт.)

Методические аспекты применения компьютерных технологий в химии. - XXXIV научная конференция факультета физико-математических и естественных наук Российского университета дружбы народов. 19-23 мая 1998 г, Москва., с.67. (в соавт.)

11. Практикум по общей химии. Изд. 2-е перераб и дополн. - Москва: Экомир, -1998 г., 127 с. (в с


Информация о работе «Повышение эффективности формирования химических знаний школьников»
Раздел: Педагогика
Количество знаков с пробелами: 38143
Количество таблиц: 4
Количество изображений: 2

Похожие работы

Скачать
12131
4
8

... материала целесообразно предложить учащимся, воспользовавшись тем же программным продуктом [4-6], применить полученные знания к другим обратимым химическим реакциям. Кроме того, для обоснования практического значения принципа Ле Шателье, можно предоставить учащимся возможность с помощью компьютера подобрать оптимальные условия для синтеза аммиака в условиях производства. Известно, что одной из ...

Скачать
134671
8
3

... , как определение (идентификация), доступ (поиск), управление, интеграция, оценка, создание, сообщение (передача). Глава 2. Формирование информационной компетенции школьников в образовательной области «Технология»   2.1 Формирование ИКТ-компетенции школьников на уроках технологии Сегодня большое внимание уделяется формированию ИКТ-компетенций школьников. И это вполне оправдано тем, что ...

Скачать
21662
0
3

... и реализующая его компьютерная программа, позволяющая искать химические закономерности, эксплуатация такой программы может проходить уже вне области компьютерной химии.   Глава 3. Мультимедийные технологии как средство повышения эффективности обучения в школе Современная школа с ее проблемами заставляет думать о том, как сделать процесс обучения более результативным. Как учить так, чтобы ...

Скачать
69241
4
5

... закономерностей возрастного развития юных футболистов (повышения функциональный возможностей, значительного повышения уровня физической подготовленности), с другой - косвенно отражать уровень эффективности многолетней технико-тактической подготовки. 3. Структура основных компонентов тактической подготовки юных футболистов В исследованиях А.П. Золотарева, А.В. Петухова, В.В.Лобановского, ...

0 комментариев


Наверх