1.2 Одноволоконные оптические системы передачи.

Широкое применение на городской телефонной сети волоконно-оптических систем передачи для организации межузловых соединительных линий позволяет в принципе решить проблему увеличения пропускной способности сетей. В ближайшие годы потребность в увеличении числа каналов будет продолжать быстро расти. Наиболее доступным способом увеличения пропускной способности ВОСП в два раза является передача по одному оптическому волокну двух сигналов в противоположных направлениях. Анализ опубликованных материалов и завершенных исследований и разработок одноволоконных оптических (ОВОСП) систем передачи позволяет определить принципы построения таких систем.

Наиболее распространенные и хорошо изученные ОВОСП, работающие на одной оптической несущей, кроме оптического передатчика и приемника содержат пассивные оптические разветвители. Замена оптических разветвителей н оптические циркуляторы позволяет уменьшить потери в линии 6 дБ, а длину линии – соответственно увеличить. При использовании разных оптических несущих и устройств спектрального уплотнения каналов можно в несколько раз повысить пропускную способность и соответственно снизить стоимость в расчете на один канало - километр.

Увеличить развязку между противонаправленными оптическими сигналами, снизить требования к оптическим разветвителям, а следовательно, уровень помех и увеличить длину линии можно путем специального кодирования, при котором передача сигналов одного направления осуществляется в паузах передачи другого направления. Кодирование сводится к уменьшению длительности оптических импульсов и образованию длительных пауз, необходимых для развязки сигналов различных направлений. В ВОСП, построенных подобным образом, могут быть использованы эрбиевые волоконно-оптические усилители. Дуплексная связь организуется по принципу разделения по времени, которое изменяется с помощью изменения направления накачки.

Развязку между оптическими сигналами можно увеличить, не прибегая к обужению импульсов, если доя передачи в одном направлении когерентное оптическое излучение и соответствующие методы модуляции, а в другом – модуляцию сигнала по интенсивности. При этом существенно уменьшается влияние как оптических разветвителей, так и обратного рассеяния оптического волокна.

Если позволяет энергетический потенциал аппаратуры, на относительно коротких линиях может быть использован только один оптический источник излучения на одном конце линии. На другом конце вместо модулируемого оптического источника применяется модулятор отраженного излучения. Такой метод дуплексной связи по одному ОВ обеспечивает высокую надежность оборудования и применение волоконно-оптических систем передачи в экстремальных условиях эксплуатации.

По достижении высокого уровня развития волоконно-оптической техники, когда станет практически возможным передавать оптически сигналы на различных модах ОВ с достаточной для ВОСП развязкой, дуплексная связь по одному ОВ может быть организована на двух разных модах, распространяющихся в разных направлениях, с использованием модовых фильтров и формирователей мод излучения.

Каждая одноволоконная ВОСП рассмотренных типов имеет достоинства и недостатки. В таблице 1 показаны достоинства (знаком «+») систем, их возможности в отношении достижения наилучших параметров. На сетях связи находят применение одноволконные ВОСП с оптическими разветвителями и со спектральным уплотнением. Впервые практически спектральное уплотнение реализовано на одной из волоконно-оптических систем передачи ГТС в Петербурге. Здесь примененено отечественное оборудование – четырехволоконный оптический кабель, аппаратура «Соната-2» (длина волны 0.85 мкм) и ИКМ-120-4/5 (длина волны 1.3 мкм). В качестве устройств спектрального уплотнения использовались устройства спектрального объединения и деления УСОД-0.85/1.3.

Они представляют собой пассивные оптические устройства, обеспечивающие с помощью интерференционного светофильтра объединение в одном ОВ и разделение сигналов с несущими на волнах 0.85 и 1.3 мкм. Схема организации световодного тракта со спектральным уплотнением показана на рис.1.8.


1.3 Построение передающих и приемных устройств ВОСП ГТС

1.3.1 Виды модуляции оптических колебаний

Для передачи информации по оптическому волокну необходимо изменение параметров оптической несущей в зависимости от изменений исходного сигнала. Этот процесс называется модуляцией.

Существует три вида оптической модуляции:

1)   Прямая модуляция. При этом модулирующий сигнал управляет интенсивностью (мощностью) оптической несущей. В результате мощность излучения изменяется по закону изменения модулирующего сигнала (рис.1.9).

2)   Внешняя модуляция. В этом случае для изменения параметров несущей используют модуляторы, выполненные из материалов, показатель преломления которых зависит от воздействия либо электрического, либо магнитного, либо акустического полей. Изменяя исходными сигналами параметры этих полей, можно модулировать параметры оптической несущей (рис.1.10).

3)   Внутренняя модуляция. В этом случае исходный сигнал управляет параметрами модулятора, введённого в резонатор лазера (рис.1.11).

Для внешней модуляции электрооптические (ЭОМ) и акустооптические (АОМ) модуляторы.

Принцип действия ЭОМ основан на электрооптическом эффекте – изменении показателя преломления ряда материалов под действием электрического поля. Эффект, когда показатель преломления линейно зависит от напряженности поля, называется эффектом Поккельса. Когда величина показателя преломления не линейно зависит от напряженности электрического поля, то это эффект Керра. Эффект Поккельса наблюдается в некоторых анизотропных кристаллах, когда эффект Керра в ряде жидкостей (нитроглицерине, сероуглероде).

Акустооптические модуляторы основаны на акустооптическом эффекте – изменении показателя преломления вещества под воздействием ультразвуковых волн. Ультразвуковые волны возбуждаются в веществе с помощью пъезокристалла, на который подается сигнал от генератора с малым выходным сопротивлением и большой акустической мощностью.

Наиболее простым с точки зрения реализации видом модуляции является прямая модуляция оптической несущей по интенсивности на основе полупроводникового источника излучения. На рис.1.12 представлена схема простейшего прямого модулятора. Здесь исходный сигнал через усилитель подаётся на базу транзистора V1, в коллектор

которого включен излучатель V2. Устройство смещения позволяет выбрать рабочую точку на ватт-амперной характеристике излучателя. Именно прямая модуляция используется на городской телефонной сети в системах «Соната-2» и ИКМ-120.


Информация о работе «Волоконно-оптические системы»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 67879
Количество таблиц: 12
Количество изображений: 28

Похожие работы

Скачать
89817
11
0

... и частотному диапазонам. Для удовлетворения всей ВОСПИ необходимо обеспечить их выполнение каждым элементам ВОСПИ: усилителем модулятором лазерным излучателем (ИЛПН) оптическим кабелем фотоприемным устройством Потери оптической мощности волоконно-оптических системах передачи происходят в основном на неоднородностях оптического волокна и соединениях. Кроме них существуют различные виды ...

Скачать
84609
24
18

... заданные функции с заданным качеством в течение некоторого промежутка времени в определённых условиях. Изменение состояния элемента (системы), которое влечёт за собой потерю указанного свойства, называется отказом. Надёжность работы ВОЛП – это свойство волоконно-оптической линии обеспечивать возможность передачи требуемой информации с заданным качеством в течение определённого промежутка времени ...

Скачать
14419
0
5

... импульсной модуляции по интенсивности в качестве поднесущей, которая может в дальнейшем легко модулиро­ваться по частоте (ЧИМ) или фазе (ФИМ). Самые общие требования к аналоговой волоконно-оптической системе передачи данных предъяв­ляет простая телеметрия и распределение телевизионных сигналов. Перед тем как рассмотреть специальные примеры, исследуем немного подробнее имеющийся запас мощности в ...

Скачать
8593
2
6

... = 2 км. αм = 0,24.10-3.113.103+0,05.55 = 29,87 дБ. Результирующая совокупная дисперсия секции находится:  с. Полоса пропускания оптической линии определяется из соотношения:  Гц. Максимальная скорость передачи двоичных оптических импульсов зависит от ∆Fов и их формы, которую принято считать прямоугольной или гауссовской: Вг=1,34.∆Fов=1,34.5,25.106=7,03.106 бит/с. ...

0 комментариев


Наверх