Параметрический синтез широкополосных усилительных каскадов

Проектирование цепей коррекции, согласования и фильтрации усилителей мощности радиопередающих устройств
ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ ПРОЕКТИРОВАНИЕ ВЫХОДНЫХ ЦЕПЕЙ КОРРЕКции, согласования и фильтрации ВЫХОДНОЙ СОГЛАСУЮЩИЙ ТРАНСФОРМАТОР ШИРОКОПОЛОСНОГО УСИЛИТЕЛЯ ВЫХОДНОЙ СОГЛАСУЮЩИЙ ТРАНСФОРМАТОР полосового УСИЛИТЕЛЯ Фильтры высших гармонических составляющих полосового усилителя ПРОЕКТИРОВАНИЕ ЦЕПЕЙ ФОРМИРОВАНИЯ АМПЛИТУДНО-ЧАСТОТНЫХ ХАРАКТЕРИСТИК Параметрический синтез широкополосных усилительных каскадов Параметрический синтез широкополосных усилительных каскадов с корректирующей цепью третьего порядка Параметрический синтез широкополосных усилительных каскадов с ЗАДАННЫМ НАКЛОНОМ АМПЛИТУДНО-ЧАСТОТНОЙ ХАРАКТЕРИСТИКИ Параметрический синтез полосовых усилительных каскадов Параметрический синтез полосовых усилительных каскадов с корректирующей цепью четвертого порядка Параметрический синтез полосовых усилительных каскадов с корректирующей цепью, выполненной в виде фильтра нижних частот Ом, диапазон усиливаемых частот 92-100 МГц, используемый транзистор – КТ970А
76676
знаков
12
таблиц
50
изображений

3.2. Параметрический синтез широкополосных усилительных каскадов

На рис. 3.1–3.3 приведены схемы КЦ, наиболее часто применяемые при построении широкополосных усилителей мощности метрового и дециметрового диапазона волн [5, 7, 12, 42–44].

Рис. 3.1. Четырехполюсная диссипативная КЦ второго порядка

Рис. 3.2. Четырехполюсная реактивная КЦ третьего порядка

Рис. 3.3. Четырехполюсная диссипативная КЦ четвертого порядка

Осуществим синтез таблиц нормированных значений элементов приведенных схемных решений КЦ.

3.2.1. Параметрический синтез широкополосных усилительных каскадов с корректирующей цепью второго порядка

Практические исследования различных схемных решений усилительных каскадов с КЦ на полевых транзисторах показывают, что схема КЦ, представленная на рис. 3.1 [43, 45, 46], является одной из наиболее эффективных, с точки зрения достижимых характеристик, простоты настройки и конструктивной реализации.

Аппроксимируя входной и выходной импедансы транзисторов  и  - и - цепями [8, 12, 47] найдем выражение для расчета коэффициента передачи последовательного соединения транзистора  и КЦ:

(3.6)

где ;

;

 – нормированная частота;

 – текущая круговая частота;

* – верхняя круговая частота полосы пропускания разрабатываемого усилителя;

 – крутизна транзистора ;

 – выходное сопротивление транзистора ;

 – нормированные относительно  и  значения элементов ;

 – выходная емкость транзистора ;

 – входная индуктивность и входная емкость транзистора .

В качестве прототипа передаточной характеристики каскада выберем функцию вида

, (3.7)

квадрат модуля которой равен:

. (3.8)

Для выражения (3.8) составим систему линейных неравенств (3.5):

(3.9)

Решая (3.9) для различных , при условии максимизации функции цели: , найдем коэффициенты квадрата модуля функции-прототипа (3.8), соответствующие различным значениям допустимого уклонения АЧХ от требуемой формы. Вычисляя полиномы Гурвица знаменателя функции (3.8), определим требуемые коэффициенты функции-прототипа (3.7). Решая систему нелинейных уравнений

относительно  при различных значениях , найдем нормированные значения элементов КЦ, приведенной на рис. 3.1. Результаты вычислений для случая, когда  равна 0,25 дБ и 0,5 дБ, сведены в таблицу 3.1.

Таблица 3.1 – Нормированные значения элементов КЦ

 = ± 0,25 дБ

 = ± 0,5 дБ

0,01

0,05

0,1

0,15

0,2

0,3

0.4

0,6

0,8

1

1,2

1,5

1,7

2

2,5

3

3,5

4,5

6

8

1,59

1,59

1,59

1,59

1,59

1,59

1,59

1,59

1,59

1,58

1,58

1,46

1,73

1,62

1,61

1,61

1,60

1,60

1,60

1,60

88,2

18,1

9,31

6,39

4,93

3,47

2,74

2,01

1,65

1,43

1,28

1,18

1,02

0,977

0,894

0,837

0,796

0,741

0,692

0,656

160,3

32,06

16,03

10,69

8,02

5,35

4,01

2,68

2,01

1,61

1,35

1,17

0,871

0,787

0,635

0,530

0,455

0,354

0,266

0,199

2,02

2,02

2,02

2,02

2,02

2,02

2,02

2,02

2,02

2,02

2,02

2,02

2,01

2,00

2,03

2,03

2,02

2,02

2,02

2,02

101

20,64

10,57

7,21

5,50

3,86

3,02

2,18

1,76

1,51

1,34

1,17

1,09

1,00

0,90

0,83

0,78

0,72

0,67

0,62

202,3

40,5

20,2

13,5

10,1

6,75

5,06

3,73

2,53

2,02

1,69

1,35

1,19

1,02

0,807

0,673

0,577

0,449

0,337

0,253

Рассматриваемая КЦ может быть использована также и в качестве входной КЦ [44]. В этом случае следует принимать: , где  – активная и емкостная составляющие сопротивления генератора.

При заданных  и  расчет КЦ сводится к нахождению нормированного значения , определению по таблице 3.1 соответствующих значений  и их денормированию.

Пример 3.1. Рассчитать КЦ однокаскадного транзисторного усилителя с использованием синтезированных данных таблицы 3.1, при условиях: используемый транзистор 3П602А; = 50 Ом; верхняя частота полосы пропускания усилителя равна 1,8 ГГц; допустимая неравномерность АЧХ равна ± 0,5 дБ. Принципиальная схема каскада приведена на рис. 3.4. Для термостабилизации тока покоя транзистора 3П602А, в схеме применена активная коллекторная термостабилизация на транзисторе КТ361А [48]. На выходе каскада включена выходная корректирующая цепь, практически не вносящая искажений в АЧХ каскада, состоящая из элементов 2,7 нГн, 0,64 пФ и обеспечивающая минимально возможное значение максимальной величины модуля коэффициента отражения ощущаемого сопротивления нагрузки внутреннего генератора транзистора (см. раздел 2.1).

Рис. 3.4 Рис. 3.5

Решение. Используя справочные данные транзистора 3П602А [49] и соотношения для расчета значений элементов однонаправленной модели полевого транзистора [1], получим:=2,82 пФ, =0,34 нГн. Нормированное относительно  и  значение  равно: 1,77. Ближайшая величина  в таблице 3.1 составляет 1,7. Для этого значения  и
+ 0,5 дБ из таблицы найдем: =2,01; =1,09; =1,19. После денормирования элементов КЦ получим: =3,2 пФ; =
4,3 нГн; =3,96 нГн; =60 Ом. Коэффициент усиления рассматриваемого усилителя равен [14]:  = 4,4.

На рис. 3.5 (кривая 1) приведена АЧХ рассчитанного усилителя, вычисленная с использованием полной эквивалентной схемы замещения транзистора [49]. Здесь же представлена экспериментальная характеристика усилителя (кривая 2), и АЧХ усилителя, оптимизированного с помощью программы оптимизации, реализованной в среде математического пакета для инженерных и научных расчетов MATLAB [50] (кривая 3). Кривые 1 и 3 практически совпадают, что говорит о высокой точности рассматриваемого метода параметрического синтеза. Оптимальность полученного решения подтверждает и наличие чебышевского альтернанса АЧХ [35].


Информация о работе «Проектирование цепей коррекции, согласования и фильтрации усилителей мощности радиопередающих устройств»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 76676
Количество таблиц: 12
Количество изображений: 50

Похожие работы

Скачать
103732
24
0

... снизить вероятность возникновения пожаров на данном объекте. ЗАКЛЮЧЕНИЕ С целью обеспечения безопасности движения речного транспорта в камере шлюза Усть-Каменогорской гидроэлектростанции в данном дипломном проекте была разработана радиолокационная станция обнаружения надводных целей, она гораздо эффективнее, чем, например система видео наблюдения. Были рассчитаны основные тактико- ...

Скачать
54797
4
17

... , обеспечивающий ослабление высших гармоник на 40 дБ вне рабочего диапазона частот передатчика в соответствии с техническим заданием (см. раздел 4 АСЧЁТ ВЫХОДНОГО ФИЛЬТРА). Поскольку в данной курсовой работе необходимо спроектировать только оконечный мощный каскад связного передатчика с ЧМ, то для конкретизации, входящие в его состав блоки обведены синей пунктирной линией, и именно о них далее ...

Скачать
23902
0
9

... (2.3) Rкэ=2·25.22/44=7.22 Ом Выберем коэффициент деления Сопротивление коллекторной нагрузки двух плеч двухтактного генератора 14.44 Ом Сопротивление нагрузки, согласно заданию на проектирование 50 Ом. Отношение двух сопротивлений и будет коэффициент трансформации 0.28. Ближайший коэффициент 0.25. Rкэ=6.25 Ом Для определенного сопротивления нагрузки проведем расчет коллекторной цепи. ...

Скачать
38739
4
22

... ЧМ. ФНЧ, выполненный на интегрирующей RC-цепочке, ограничивает спектр сигнала до 3,5 кГц. Модулирующий сигнал, усиленный и прошедший цепи коррекции поступает на варикап ГУНа, где производится частотная модуляция несущего колебания. ГУН выполним по схеме Клаппа, его центральная частота управляется с помощью второго варикапа, на который управляющий сигнал подается с цифрового синтезатора частоты, ...

0 комментариев


Наверх