1. наибольшая значимость тем для раскрытия ведущих, основополагающих идей учебного предмета;
2. высокая степень обобщения и интеграции разнородных знаний в содержании учебной темы.
Опираясь на данные критерии, подвергнем анализу содержание учебных тем «Строение атома» и «Электромагнитное поле». Выделенные учебные темы наиболее отвечают цели данной опытной работы и критериям отбора, приведенным выше.
Межпредметные связи темы «Строение атома».
Это тема - одна из центральных в предмете физики. Степень перекры-ваемости содержания данной темы с другими дисциплинами очень высока. Вот почему значение межпредметных связей для раскрытия ведущих положений этой темы огромно и объективно необходимо.
Таблица 2.
Ведущие положения темы | Знания, используемые из других школьных дисциплин для раскрытия ведущих положений темы | |
1. Зависимость строения атома от свойств и строения его элементов | ОБЩЕСТВОВЕДЕНИЕ: материя и движение, развитие и всеобщая связь явлений мира. ХИМИЯ: периодический закон и система химических элементов Д. И. Менделеева; строение молекулы воды; катализаторы; органические вещества - белки, жиры, углеводы... АСТРОНОМИЯ: строение Солнечной системы, движение планет и небесных тел. | |
2. Раскрытие связи между строением и функциями структурных основных компонентов атома | ОБЩЕСТВОВЕДЕНИЕ: категории диалектики: причина и следствие, содержание и форма, сущность и явление и д.р. ИСТОРИЯ: понятие о системе, познаваемость мира. БИОЛОГИЯ: строение клетки и ее основных элементов | |
3. Свойства тел в зависимости от их молекулярного строения, движение атомов | МАТЕМАТИКА: построение графиков движения, вектора, решение уравнений ИНФОРМАТИКА: решение уравнений о движении тел с помощью составления программ | |
4. Внутренняя энергия атома в зависимости от заряда, строения и движения его элементов | ОБЩЕСТВОВЕДЕНИЕ: закон единства и борьбы противоположностей; закон перехода количественных изменений в качественные. ХИМИЯ: типы химических реакций БИОЛОГИЯ: обмен веществ и энергии, фотосинтез МАТЕМАТИКА: использование математических формул, действий для осуществления расчетов ИНФОРМАТИКА: моделирование физических явлений с помощью компьютера | |
Таблица 3.
Ведущие положения темы | Знания, используемые из других школьных дисциплин для раскрытия ведущих положений темы |
1. Доказательство с точки зрения диалектико-материалистической методологии существования электромагнитных полей | ОБЩЕСТВОВЕДЕНИЕ: философские представления о мире и его познании. ИСТОРИЯ И ЛИТЕРАТУРА: социально-историческая обусловленность развития науки; история борьбы науки и религии. МАТЕМАТИКА: построение линии векторов, отрицательные и положительные числа |
2.Энергия электромагнитных полей как результат взаимодействия заряженных частиц | ХИМИЯ: превращение химических элементов; генетическая связь между классами химических соединений АСТРОНОМИЯ: строение небесных тел, процессы Солнечной активности |
3. Электромагнитные свойства вещества как основа их применения в технике | ХИМИЯ: свойства химических элементов, Периодическая система Д.И. Менделеева БИОЛОГИЯ: электрические явления в нервных процессах человека ТЕХНОЛОГИЯ: использование различных приборов при создании учебных проектов |
Анализируя данные таблицы межпредметных связей можно увидеть, что сами связи в них даны в своеобразном статическом состоянии (статичная сторона межпредметных связей в учебной теме определяется содержанием учебного материала). Однако в реальном учебном процессе межпредметные связи рассматриваются в динамике (динамическая сторона межпредметных связей в учебной теме определяется процессом обучения) и в органическом единстве с внутрипредметными и внутрикурсовыми связями — в этом и заключается качественное отличие составленной дидактической модели межпредметных связей от процесса овладения ими школьниками. Анализ таблиц также может показать, что опорные межпредметные знания часто носят «стыковой», синтезированный характер. Особенно насыщены ими последние темы. Это и понятно, поскольку многие понятия к концу учебного года осознаются и применяются старшеклассниками на высоком уровне обобщения, в свернутом виде.
Таким образом, таблично текстовой анализ содержания рассматриваемых учебных тем показал, что они могут быть изучены на широкой межпредметной основе с целью научного, системного, доступного и всестороннего раскрытия их ведущих положений и создания более целостной системы знаний по каждой теме, а через совокупность тем и по учебному предмету в целом. Ведущие идеи и положения учебных дисциплин выполняют при этом функцию своеобразных стыкующих «стержней».
§ 1.3. Проблемы межпредметных связей в практике школьного обучения
Для того чтобы выявить, охарактеризовать и найти пути устранения данных проблем, необходимо провести интенсивный поиск оптимальных условий, этапов и путей превращения дидактической модели межпредметных связей в учебных темах в факт овладения, установления этих связей школьниками. Критериями результативности этого процесса будут являться повышение знаний учащихся и прежде всего системности этих знаний, их мобильности и мировоззренческого потенциала обучаемых.
В ходе выполнения данной задачи, наше внимание привлек метод, предложенный одним из ученых-педагогов нашей страны Федорцом Г.Ф. Он проводил свою опытную работу по выявлению и решению проблем межпредметных связей следующим образом:
Было выявлено 2 этапа работы: поисковый и созидательный.
Задачей поискового этапа явилось выявление и констатация реального положения дел в решении проблемы межпредметных связей при изучении учебных тем предмета (в данном случае физики).
В ходе и после изучения учащимися выделенных тем («Строение атома» и «Электромагнитное поле») школьникам давались лабораторные работы, вопросы которых ориентировали их на раскрытие ведущих положений учебных тем с помощью межпредметных связей, т.е. учащиеся имели возможность самостоятельно использовать необходимые для раскрытия ведущих положений учебных тем знания из других учебных предметов.
Лабораторные работы школьников анализировались по следующим критериям:
1. полнота привлечения учащимися (относительно дидактической модели межпредметных связей) опорных межпредметных знаний.
2. место опорных знаний в ответе школьника.
3. качество синтеза межпредметных связей.
Кроме вопросов, ориентирующих учащихся на раскрытие ведущих положений учебных тем, по каждой теме был также дан СИНТЕЗИРОВАННЫЙ ВОПРОС, требовавший от школьников раскрыть ведущие идеи данной темы посредством установления связи между ее ведущими положениями на основе внутритемных связей.
Анализ работ старшеклассников показал, что подавляющее большинство испытуемых не смогли раскрыть ведущие положения экспериментальных тем на основе межпредметных связей. Это свидетельствует о том, что: «Этот процесс синтеза должен также сочетаться с умением достичь высокого уровня обобщения, компактности знаний, умением экономно излагать его, избегать привлечения «шумовых» (лишних) сведений из других дисциплин.
Этот процесс требует специальной организующей работы учителя по обучению учащихся межпредметному синтезу с помощью многосторонних межпредметных связей вокруг ведущих положений учебной темы, ведущих идей учебного предмета, ведущих идей науки». [17,45].
В ходе поискового этапа опытной работы, Федорец Г.Ф. также установил, что научность, системность, мобильность и мировоззренческий потенциал знаний учащихся во многом зависит от умения устанавливать межпредметные связи. «Самостоятельность же учащихся по выявлению и осуществлению межпредметных связей формируется в результате целенаправленной работы учителя, которая обеспечивает: развитие у школьников умения выявлять ведущие положения изучаемой темы и ведущие идеи всего учебного предмета, развитие умения по организации изучения учебного материала вокруг стержневых положений темы и дисциплины в целом на широкой межпредметной основе, осознание учащимися необходимости и важности межпредметного синтеза как в учебной деятельности, так и в будущей практической работе при реализации важных производственных, социальных и научных задач». [18,35].
Проведенный анализ качества знаний, умений и навыков учащихся школы обнаружил серьезные недостатки в усвоении учащимися основополагающих понятий формировании их умений и навыков, недостаточное понимание некоторыми учениками практического значения изучаемых ими теоретических знаний, разрыв между их теоретической и практической подготовкой, неумение применять усвоенные теоретические знания в различных ситуациях. Указанные недостатки отрицательно влияют на развитие познавательных интересов учеников. Отыскание путей повышения качества знаний школьников приводит к необходимости организации работы коллектива учителей школы над изучением проблемы межпредметных связей и определению путей практического решения некоторых вопросов этой проблемы.
Таким образом, исследования специалистов показывают перспективность решения задач путем более полной реализации межпредметных связей, способствующих систематизации знаний учащихся, выработке у них умений и навыков по ряду предметов. Однако, эпизодическое использование знаний одного предмета при изучении другого способно лишь частично выработать синтезированные знания и умения. Особая роль в решении этого вопроса принадлежит формированию общих понятий на межпредметной основе.
ГЛАВА 2. ФОРМИРОВАНИЕ У УЧАЩИХСЯ ОБЩИХ ФИЗИКО-МАТЕМАТИЧЕСКИХ ПОНЯТИЙ
§ 2.1. Роль учителя в организации межпредметных связей
Обучение — двусторонний процесс. Даже искусственно ограничив его лишь информационной стороной, можно показать, что деятельность учителя и ученика неодинаковы. Учитель преподает учащимся знания, выявляет логические связи между отдельными частями содержания, показывает возможности использования этих связей для приобретения новых знаний. Ученик же усваивает эти знания, приобретает индивидуальный опыт познания, учится самостоятельно применять знания. Процесс познания учащимися протекает под руководством учителя, что еще раз подчеркивает различие видов их деятельности.
Итак, рассмотрим мысленно ситуацию, при которой межпредметные связи в преподавании используются успешно. Какова при этом деятельность учащихся? Многообразие их видов деятельности можно в этом случае объединить в три группы:
1. Учащиеся умеют привлекать и привлекают понятия и факты из родственных дисциплин для расширения поля применимости теории, изучаемой в данном предмете;
2. Учащиеся умеют привлекать и привлекают теории, изученные на уроках других предметов, для объяснения фактов, рассматриваемых в данной учебной дисциплине;
3. Учащиеся умеют привлекать и привлекают практические умения и навыки, полученные на уроках родственных дисциплин, для получения новых экспериментальных данных.
Разумеется, перечень действий учащихся этим не ограничивается, но мы остановимся на них, полагая, что они являются важнейшими.
Успешная деятельность учителя по реализации межпредметных связей требует специальных условий. К ним можно отнести координацию учебных планов и программ, координацию учебников и методических пособий, а также разработанную и экспериментально проверенную методику обучения учащихся переносу необходимой информации из одной дисциплины в другую и эффективные способы проверки этого важного умения.
Создание условий деятельности учителей является важной задачей методистов, ученых-педагогов. В этой области предстоит еще много сделать. Так, например, требует углубленного изучения проблема координации учебных курсов по ступеням развития естественнонаучных понятий, методам экспериментального исследования и др. Необходимо также изучить вопросы согласованных методических подходов к рассмотрению общих для курсов понятий, фактов, теорий.
Наряду с тем, что отдельные важные вопросы межпредметных связей еще не разработаны, трудности в их использовании возникают также по причине слабой соответствующей подготовки учителей. Известно, что учителя химии весьма слабо владеют физикой и математикой. Учителя физики некомпетентны в химии и биологии. В таких условиях они не могут эффективно воспользоваться теми возможностями, которые предоставляет реализация межпредметных связей.
«Принципиально методику обучения учащихся использованию межпредметных связей в учебной деятельности можно представить состоящей из трех ступеней. На первой ступени (условно названной воспроизводящей) основная цель учителя — приучить учащихся использовать знания, полученные в естественнонаучных дисциплинах. Эта ступень может быть разбита на три этапа:
Первый этап. Организация учителем процесса повторения учащимися необходимых сведений из соответствующих дисциплин.
Второй этап. Объяснение нового учебного материала учителем с использованием фактов и понятий из какого-либо одного учебного предмета для подтверждения рассматриваемых теоретических положений.
Третий этап. Изложение нового материала, при котором учителем привлекается естественнонаучная теория из смежной дисциплины для объяснения рассматриваемых явлений». [7,24].
Первая ступень формирования умения учащихся переносить межпредметные знания может быть использована в большей мере в младших классах. Но поскольку на этой ступени могут быть решены первые две задачи использования межпредметных связей (изучение понятий собственного предмета, а также родственных для смежных курсов понятий), то и в старших классах учитель может его использовать, но в сочетании с более высокими ступенями.
Вторая ступень обучения учащихся переносу знаний из предмета в предмет так же, как и первая, состоит из трех этапов. Если на первой ступени учитель требовал от учащихся воспроизведения знаний того материала смежной дисциплины, который он привлекал в процессе объяснения, то теперь основное внимание уделяется самостоятельному применению школьниками сведений из родственных курсов. Поэтому вторую ступень можно назвать ступенью использования знаний.
На четвертом этапе (этапы всех ступеней имеют сквозную нумерацию) учитель требует от учащихся самостоятельного (без предварительного повторения в классе) воспроизведения отдельных знаний фактического или теоретического характера из смежной дисциплины. Это требование способствует выявлению степени готовности учащихся применять знания новой учебной ситуации, а также преодоления у них известного психологического барьера, суть которого состоит в затруднении, испытываемым учащимися при необходимости раскрыть содержание материала курса на уроках смежной дисциплины.
На пятом этапе учитель уже требует не воспроизведения знаний, полученных на уроках физики, а привлечения учащимися фактов и понятий, усвоенных ими на уроках этого предмета, для подтверждения вновь усваиваемых на уроках, например, математики знаний.
На шестом этапе от учащихся требуется самостоятельное привлечение какой-либо, теории, изученной на уроках физики, для объяснения изучаемых явлений в курсе, например, химии.
Третья ступень обучения учащихся использованию межпредметных связей также состоит из нескольких последовательных этапов. Основная цель этой ступени заключается в том, чтобы обучить учащихся применять понятия, факты, законы и теории для иллюстрации единства мира, а также использовать общие законы диалектики для объяснения явлений, изучаемых на уроках физики и химии. В связи с целями, стоящими перед данной ступенью, ее можно условно назвать обобщающей.
Третья ступень обучения учащихся переносу знаний из предмета в предмет состоит из нескольких последовательных этапов:
Седьмой этап. Объяснение учителем проявления в изучаемых на уроках данной дисциплины явлениях общих законов диалектики;
Восьмой этап. Объяснение учителем места изучаемых явлений в общей картине мира.
Девятый этап. Воспроизведение учащимися общих законов диалектики при объяснении явлений, изучаемых на уроках данной дисциплины;
Обобщая сказанное, хотелось бы заметить, что выделенные ступени и этапы довольно условны. Также весьма условно распределено использование их по классам. В практической работе учителя этапы обучения учащихся переносу знаний из предмета в предмет могут в значительной мере варьироваться. Основная цель использования ступеней и этапов состоит, во-первых, в упорядочении .работы учителей по реализации межпредметных связей в преподавании, во-вторых, они позволяют судить достигнутых в работе результатах обучения, в-третьих, дают возможность оценить степень овладения учащимися умением переносить и использовать знания, полученные на занятиях смежных дисциплин.
§ 2.2. Использование межпредметных связей при изучении курса физики в школе
При изучении различных учебных дисциплин ученики школы получают всесторонние знания о природе и обществе, но простое накопление знаний еще недостаточно для эффективной подготовки их к трудовой деятельности. Выпускник школы должен уметь синтезировать знания, творчески применять их в разнообразных жизненных ситуациях. Формирование синтезирующего мышления школьника способствует осуществлению межпредметных связей при изучении ими основ наук.
Осуществление связи курса физики с другими предметами облегчается тем, что на занятиях по физике изучают материал, имеющий большое значение для всех, и особенно естественно-математических и политехнических дисциплин, которые используют физические теории, законы и физические методы исследования явлений природы. Важно также, на занятиях по физике учащиеся получают большое количество практических навыков и умений, необходимых в трудовой деятельности и при изучении других предметов. Разумеется, что в равной мере межпредметные связи необходимы и для успешного изучения физики.
Физика неразрывно связана с математикой. Математика дает физике средства и приемы общего и точного выражения зависимости между физическими величинами, которые открываются в результате эксперимента или теоретических исследований. Поэтому содержание и методы преподавания физики зависят от уровня математической подготовки учащихся. Программа по физике составлена так, что она учитывает знания учащихся и по математике.
Учителю физики необходимо ознакомиться с содержанием школьного курса математики, принятой в нем терминологией и трактовкой материала с тем, чтобы обеспечить на уроках общий «математический язык». Так, центральным понятием в алгебре VII класса является понятие функции, для него вводится символическая запись у=f(x), излагаются способы задания функции - таблицей, графиком, формулой. Ввиду этого отпадают ранее имевшие место в методике физики рекомендации о введении на первых уроках буквенной символики. Вместо этого теперь необходимо шире использовать знания учащихся о функциональной зависимости, о построении графиков функций, о сложении векторов.
На уроках физики с понятием вектора школьники сталкиваются впервые в VI классе при изучении скорости и силы. Здесь векторы определяются как физические величины, которые, кроме числового значения, имеют направление. Параллельно в курсе геометрии шестиклассники знакомятся с понятием перемещения, определяемым как отображение плоскости на себя, сохраняющее расстояние; рассматривается частный случай перемещения — параллельный перенос. Однако ни перемещение, ни параллельный перенос с понятием «вектор», введенным в курсе физики, без дополнительной работы учителя в сознании учащихся не ассоциируются. Хотя на первый взгляд в математике и физике векторами называют разные объекты, последние обладают рядом общих свойств, характеризующих их векторную природу.
«Это единство заключается в том, что каждому физическому или математическому объекту, который называют вектором, присущи особые операции, такие, как сумма двух объектов и умножение объекта на число. Таким образом, на первой ступени обучения физике нет нужды добиваться от учащихся заучивания того, что сила и скорость суть векторные величины, необходимо показать им, что эти величины имеют некоторые особые свойства, благодаря которым действия над ними отличаются от действий над числами». [1,62].
В современном школьном курсе механики векторы и координатный метод нашли широкое применение. Векторная форма уравнений в сочетании с соответствующими рисунками раскрывает физическую ситуацию в задаче и предопределяет, как показывает опыт, успешное ее решение. Эта форма облегчает алгебраическую запись уравнения движения или условий равновесия. Однако следует иметь в виду известную ограниченность дидактических возможностей применения векторного исчисления при первоначальном изучении физики. Еще У. Томсон указывал, что «векторы сберегают мел и расходуют мозг». Академик А. Н. Крылов отмечал, что применение векторного исчисления «похоже на то, как если бы в начальной школе ребят одновременно стали бы учить и чистописанию и стенографии». Вместе с тем представление функциональных зависимостей и виде геометрических образов на координатной сетке отражает в наглядной форме динамизм реальных явлений и взаимосвязь между физическими величинами.
Физические закономерности записываются в школе главным образом аналитически, с помощью формул. Поэтому всегда имеется гласность, что учащиеся будут воспринимать функциональную зависимость формально. Графический способ обладает по сравнению с аналитическим значительными преимуществами: график показывает ход физической закономерности, наглядно раскрывает динамику процесса. Опыт показывает, что установление связи между физическими величинами на опыте (например, выяснение зависимости между I, U и R и установление закона Ома для участка цепи) и изображение ее в виде геометрического образа дает возможность постепенно создавать, расширять и укреплять такие важные представления, как прямая и обратная пропорциональная зависимость величин, линейная, квадратичная, показательная и логарифмическая функции, среднее значение, максимум и минимум функции.
Покажем, как могут быть реализованы межпредметные связи физики и математики при формировании таких понятий как функция, величина, производная, интеграл. Причины, побудившие меня обратиться к этому вопросу, следующие:
Во-первых, изучение названных понятий в старших классах затрудняет преподавание, например, механики в курсе физики. Так, по нашему мнению, изучение основных понятий математического анализа в математике целесообразнее начать одновременно с прохождением механики в физике.
Во-вторых, изучению всего курса физики препятствует недостаточное использование математического аппарата, которое происходит либо из-за позднего формирования у учащихся, либо из-за отсутствия согласованности действий преподавателей физики и математики в использовании общих физико-математических понятий.
Выход из создавшейся ситуации мы видим в совместном формировании у учащихся понятий математического анализа в курсах физики и математики как высшей формы реализации межпредметных связей. Именно при параллельном изучении основ механики и математического анализа открываются наибольшие возможности для формирования физических понятий - мгновенная скорость, мгновенное ускорение, перемещение, работа, так и математических - производная, первообразная, интеграл.
Учебные план и программы современной школы позволяют осуществлять межпредметные связи в процессе изучения основ каждой науки. Но подлинные межпредметные связи, использование которых способствует формированию синтезирующего мышления школьников, позволяет учащимся всесторонне изучать явления природы и общества, осуществляются только в том случае, когда учитель в процессе обучения «своего» предмета и средствами этого предмета раскрывает явления, изучаемые в других учебных дисциплинах, расширяет, углубляет знания учеников, осуществляет перенос знаний в разнообразные ситуации, формирует у учеников обобщенные понятия, умения, навыки.
На наш взгляд, в IX классе достаточно разобрать понятие производной многочлена. А дальнейшее развитие понятий производной и интеграла с привлечением различных функций целесообразно продолжить в Х и XI классах на уроках физики и математики.
«При реализации межпредметных связей предпочтение следует отдать скорее наглядности физики, чем строгости математических доказательств. Поэтому на уроках математики, например, производную сумму вводить при помощи закона сложения скоростей; при выводе формулы производной функции, основанном на использовании метода неполной индукции, математические выкладки подтверждаются примерами из физики; понятия предельного перехода формируется на основе физического эксперимента, во время которого определяются значения средних скоростей движения тела за уменьшающиеся промежутки времени. Рассмотрение физического примера — движение тела, брошенного вертикально вверх, - облегчает задачу формирования понятий возрастающей и убывающей функций, позволяет мотивированно ввести понятие второй производной и на этой основе получить правила определения выпуклости графика. Что касается понятий «первообразная» (неопределенный интеграл) и «интеграл» (определенный интервал), то их формирование целесообразно проводить с широким использованием физических примеров, начиная с их определения, получения основного свойства первообразных, геометрического образа первообразной и интеграла и заканчивая правилами интегрирования многочлена». [13,51].
Физика в формировании понятий математического анализа играет не пассивную роль средства наглядности, а дает возможность представить предельный переход в динамике и осмыслить понятие «бесконечно малой величины».
Для курса физики знание производной и интеграла открывает перспективу в плане возможности более строгого определения ряда физических величин;
точной записи второго закона Ньютона, закон электромагнитной индукции, ЭДС индукции, возникающей в рамке, вращающейся в магнитном поле; упрощение работ с графиками и, наконец, рассмотрение видов равновесия тел не только с позиции действия силы, но и с энергетической точки зрения. Знание учащимся производной и интеграла позволяет выработать у них общий подход к определению физических величин и решению графических задач физического содержания.
С этой целью можно, например, использовать алгоритмические схемы, являющиеся общими для определения математических и физических функциональных зависимостей. Так, схема общего подхода к определению физических понятий с помощью производной может быть следующей:
... разовая) – 0,01%. 4 Содержание Введение......................................................................................................................4 Глава 1. Межпредметные связи в курсе школьного предмета химии на примере углерода и его соединений.......................................................................5 1.1 Использование межпредметных связей для формирования у учащихся ...
... движение. Глава 3. развитие понятия функции в школьном курсе физике. §3.1. Функция как важнейшее звено межпредметных связей. В общей системе теоретических знаний учащихся по физике и математике в средней школе большое место занимает понятие «функция». Оно имеет познавательное и мировоззренческое значение и играет важную роль в реализации межпредметных связей [13]. Функция является одним ...
... связи - это развитие основных положений общенаучных теорий и законов, изучаемых на уроках по родственным предметам, с целью усвоения учащимися целостной теории. § 2. Функции межпредметных связей [3] Межпредметные связи в школьном обучении являются конкретным выражением интеграционных процессов, происходящих сегодня в науке и в жизни общества. Эти связи играют важную роль в повышении ...
... каждому математическому курсу и опорных тем из программ и учебников других предметов, чтение дополнительной научной, научно-популярной и методической литературы; 2) поурочное планирование межпредметных связей с использованием курсовых и тематических планов; 3) разработка средств и методических приемов реализации межпредметных связей на конкретных уроках; 4) разработка методики подготовки ...
0 комментариев