Обработка культуры клеток алкалоидом колхицином, который ведет к накоплению делящихся клеток на стадии метафазы;

73959
знаков
1
таблица
3
изображения

1. Обработка культуры клеток алкалоидом колхицином, который ведет к накоплению делящихся клеток на стадии метафазы;

2. Обработка клеток слабыми растворами солей, вызывающими набухание, расправление хромосом, что облегчает их исследование.

В 1956 г. шведские цитологи Дж. Тийо и А. Леван изготовили культуры клеток из тканей легких, взятых у абортированных челове­ческих эмбрионов и, используя усовершенствованную методику обра­ботки клеток, получили необычайно четкие препараты, в которых ясно было видно 46 хромосом.[5]

Несколькими месяцами позднее Ч. Форд и Дж. Хаммертон в Англии установили, что диплоидные предшественники половых клеток в се­менниках мужчин (сперматогонии) также имеют по 46 хромосом, а гаплоидные (сперматоциты 1-го деления) — по 23 хромосомы.

После этого были изучены многие клетки из разных органов и тканей человека и везде нормальное число хромосом оказалось равным 46.

Женский кариотип отличается от мужского только одной половой хромосомой. Остальные 22 пары одинаковы у мужчин и женщин. Эти 22 пары хромосом называются аутосомами. Нормальный кариотип состоит из 44 аутосом (22 пары) и двух половых хромосом — XX у женщин и XY у мужчин, т. е. женский кариотип имеет две большие половые хромосомы, а мужской — одну большую и одну малень­кую.

В половых клетках человека находится одинарный (гаплоидный) набор хромосом — 23, а в соматических клетках — двойной (диплоидный) набор — 46. Эти открытия стимулировали дальнейшее изу­чение хромосом. Были разработаны методы исследования хромосом в культуре лимфоцитов периферической крови и на других объектах. В настоящее время хромосомы относительно легко исследуют в лим­фоцитах периферической крови. Венозную кровь помещают в специ­альную питательную среду, добавляют фитогемаглютинин, который стимулирует клетки к делению, и помещают на 72 ч. в термостат. За 6 ч. до конца инкубации сюда добавляют колхицин, который за­держивает процесс деления клеток на стадии метафазной пластинки. Затем культуру помещают в гипотонический раствор NaCl, в котором клетки набухают, что приводит к легкому разрыву оболочек ядра и переходу хромосом в цитоплазму. После этого препараты окрашивают ядерными красителями, в частности ацетоорсеином, и рассматривают их в световом микроскопе с иммерсией.

Под микроскопом учитывают общее количество хромосом, фото­графируют их, затем из фото вырезают ножницами каждую хромосому и наклеивают на чистый лист бумаги в ряд, начиная от самой боль­шой (первой) хромосомы и кончая самой маленькой (двадцать второй) и половой Y-хромосомой. Люминесцентная методика позволяет быстро и просто проводить массовые исследования с целью выявления боль­ных с различными типами хромосомных аномалий. Совокупность коли­чественных (число хромосом и их размеры) и качественных (морфо­логия хромосом) признаков диплоидного набора единичной клетки обозначается термином «кариотип». Строение хромосом изменяется в зависимости от стадии деления клеток (профазы, метафазы, анафазы, телофазы).

Уже в профазе митоза видно, что хромосома образована двумя взаимно переплетающимися нитями одинакового диаметра — хроматидами. В метафазе хромосома уже спирализована, и две ее хроматиды ложатся параллельно, разделенные узкой щелью. Каждая хроматида состоит из двух полухроматид. В результате митоза хроматиды мате­ринской хромосомы становятся сестринскими хромосомами, а полухроматиды — их хроматидами. В основе хроматид лежат хромонемы — так называют более тонкие нити ДНП, состоящие из белка и нуклеи­новых кислот.

В интерфазе (промежуток между двумя делениями клеток) хрома­тин тесно связан с ядерными мембранами и ядерным белковым матриксом. Он образует также большие участки деспирализованных ни­тей ДНП. Затем постепенно хроматин спирализуется, образуя типич­ные метафазные хромосомы. Размеры их варьируют от 2 до 10 микрон.

В настоящее время интенсивно исследуются структурные особен­ности аутосом и половых хромосом (на клетках костного мозга, лимфоцитах, фибробластах, клетках кожи, регенерирующей печени).

В хромосомах выявлены структуры, названные хромомерами. Хромомер — это спирализованный участок хромонемы. Промежутки меж­ду хромомерами представлены хромонемными нитями. Расположение хромомеров на каждой хромосоме строго фиксировано, наследственно детерминировано.

Хромомер — сравнительно крупная генетическая единица, сравни­мая по длине с хромосомой кишечной палочки. Строение и функция хромомера — основная загадка современной генетики. Предполагают, что некоторые хромомеры — это один генетический локус, где есть один структурный ген и много генов регуляторных. Возможно, в дру­гих хромомерах располагается несколько структурных генов.

Хромонемы и хромомеры окружены неокрашивающимся вещест­вом — матриксом. Полагают, что матрикс содержит дезоксирибонуклеиновую и рибонуклеиновую кислоты, белки.

Определенные участки хромосом образуют ядрышки. Ядрышки — это более или менее деспирализованные участки хромосом, окружен­ные продуктами деятельности генов (рибосомы, частицы РНК и т. п.). Здесь идет синтез рибосомальной РНК, а также осуществляются определенные этапы формирования рибосом. В нем синтезируется боль­шая часть РНК клетки.

В метафазной хромосоме различают еще несколько образований: центромеру, два плеча хромосомы, теломеры и спутник.

Центромерный (meros — по-гречески, часть) участок хромосомы — это неокрашивающийся разрыв в хромосоме, видимый на препарате хромосом. Центромера содержит 2—3 пары хромомер, имеет сложное строение. Предполагают, что она направляет движение хро­мосомы в митозе. К центромерам прикрепляются нити веретена.

Теломеры — специальные структуры на концах хромосом — также имеют сложное строение. В их состав входит несколько хромомер. Теломеры предотвращают концевое присоединение метафазных хромо­сом друг к другу. Отсутствие теломеров делает хромосому «липкой» — она легко присоединяется к другим фрагментам хромосом.

Одни участки хромосомы называются эухроматиновыми, другие — гетерохроматиновыми. Эухроматиновые районы хромосом — это гене­тически активные участки, они содержат основной комплекс функ­ционирующих генов ядер. Потеря даже мельчайшего фрагмента эухроматина может вызвать гибель организма. Гетерохроматиновые районы хромосом — обычно сильно спирализованы и, как правило, генети­чески мало активны. В гетерохроматине находится ядрышковый ор­ганизатор. Потеря даже значительной части гетерохроматина часто не приводит организм к гибели. Гетерохроматиновые участки хромосомы реплицируются позднее, чем эухроматиновые. Следует помнить, что эухроматин и гетерохроматин — это не вещество, а функциональ­ное состояние хромосомы.

Если расположить фотографии гомологичных хромосом по мере возрастания их размеров, то можно получить так называемую идиограмму кариотипа. Таким образом, идиограмма — это графическое изображение хромосом. На идиограмме пары гомологов располагаются рядами в порядке убывающего размера.

У человека на идиограмме среди 46 хромосом различают три типа хромосом в зависимости от положения в хромосоме центромер:

1. Метацентрические — центромера занимает центральное поло­жение в хромосоме, оба плеча хромосомы имеют почти одинаковую длину;

2. Субметацентрические — центромера располагается ближе к одному концу хромосомы, в результате чего плечи хромосомы разной длины.

Классификация хромосом человека по размеру и расположению центромера
Группа хромосом Номер по кариотипу Характеристика хромосом
А(1) 1,2,3 1 и 3 почти метацентрические и 2—крупная субметацентрическая
В (11) 4,5 крупные субакроцентрические
С (III) 6—12 средние субметацентрические
A(lV) 13—15 средние акроцентрические
E(V) 16-18 мелкие субметацентрические
F(VI) 19—20 самые мелкие мегацентрические
G(VII) 21—22 самые мелкие акроцентрические
Х-хромосома (относится к III группе 23 средняя почти метацентрическая
Y-хромосома 23 мелкая акроцентрическая

3. Акроцентрические — центромера находится у конца хромосо­мы. Одно плечо очень короткое, другое длинное. Хромосомы не очень легко отличать одну от другой. Цитогенетики с целью унификации методов идентификации хромосом на конференции в 1960 г. в г. Ден­вере (США) предложили классификацию, учитывающую величину хромосом и расположения центромер. Патау в том же году дополнил эту классификацию и предложил разделить хромосомы на 7 групп. Согласно этой классификации, к первой группе А относятся крупные 1, 2 и 3 суб- и акроцентрические хромосомы. Ко второй группе В — крупные Субметацентрические пары 4—5. К третьей группе С относят­ся средние субакроцентрические (6—12 пары) и Х-хромосома, которая по величине находится между 6 и 7 хромосомами. К группе Д (чет­вертой) относятся средние акроцентрические хромосомы (13, 14 и 15 пары). К группе Е (пятой)— мелкие Субметацентрические хромосомы (16, 17 и 18 пары). К группе F (шестой) мелкие метацентрические (19 и 20 пары), а к группе G (седьмой) — самые мелкие акроцентрические хромосомы (21 и 22 пары) и мелкая акроцентрическая половая Y-хромосома (табл. 4).

Существуют и другие классификации хромосом (Лондонская, Па­рижская, Чикагская), в которых развиты, конкретизированы и до­полнены положения Денверской классификации, что в конечном итоге облегчает идентификацию и обозначение каждой из хромосом человека и их частей.

Акроцентрические хромосомы IV группы (Д, 13—15 пары) и груп­пы VII (G, 21—22 пары) на коротком плече несут маленькие дополнительные структуры, так называемые сателлиты. В некото­рых случаях эти сателлиты являются причиной сцепления хромосом между собой при делении клеток в мейозе, вследствие чего происходит неравномерное распреде­ление хромосом. В одной половой клетке оказывается 22 хромосомы, а в другой — 24. Так возникают моносомии и трисомии по той или иной паре хро­мосом. Фрагмент одной хромосомы мо­жет присоединиться к хромосоме дру­гой группы (например, фрагмент 21 или 22 присоединяется к 13 или 15). Так возникает транслокация. Трисомия 21-й хромосомы или транслокация ее фраг­мента являются причиной болезни Дауна.

Внутри семи этих групп хромосом на основании лишь внешних различий, видимых в простой микроскоп, провести идентификацию хромосом почти невоз­можно. Но при обработке хромосом акрихини притом и при помощи ряда дру­гих методов окраски их можно иден­тифицировать. Известны различные

способы дифференциальной окраски хромосом по Q-, G-, С-технике (А. Ф.Захаров, 1973) (рис. 27). Назовем некоторые методы идентифи­кации индивидуальных хромосом человека. Широко применяются раз­личные модификации так называемого метода Q. Например, метод QF — с использованием флюорохромов; метод QFQ — с использованием акрихина; метод QFH — с использованием специального красителя фир­мы «Хекст» № 33258, выявляющего повторяющиеся последовательности нуклеотидов в ДНК хромосом (сателлитную ДНК и т. п.). Мощным средством изучения и индивидуальной характеристики хромосом явля­ются модификации трипсинового метода GT. Назовем, например, GTG-метод, включающий обработку хромосом трипсином и окраску краси­телем Гимза, GTL-метод (обработка трипсином и окраска по Лейтману).

Известны методы с обработкой хромосом ацетатными солями и красителем Гимза, методы с использованием гидроокиси бария, акридиноранжа и другие.

ДНК хромосом выявляется при помощи реакции Фельгена, окраски метиловым зеленым, акридиноранжем, красителем № 33258 фирмы «Хекст». Акридиноранжевый краситель с ДНК однонитчатой образует димерные ассоциаты и дает красную люминесценцию, с двунитчатой спиральной ДНК образует одномерные ассоциаты и люминесцирует зеленым светом.

Измеряя интенсивность красной люминесценции, можно судить о количестве свободных мест в ДНП и хроматине, а отношение зеле­ная — красная люминесценция — о функциональной активности хро­мосом.

Гистоны и кислые белки хромосом выявляются при различных рН окраской бромфенодовым синим, зеленым прочным, серебрением, иммунолюминесцентным методом, РНК — окраской галлюцианиновыми квасцами, красителем фирмы «Хекст» № 1, акридиноранжем при нагревании до 60°.

Широко применяются электронная микроскопия, гистоавторадиография и ряд других методов.

В 1969 г. шведский биолог Т. Касперссон и его сотрудники пока­зали, что хромосомы, окрашенные горчичным акрихином и освещенные под микроскопом Наиболее длинноволновой частью ультрафиолетового спектра, начинают люминесцировать, причем одни участки хромосом светятся ярче, другие слабее. Причина этого — разный химический состав поверхности хромосомы. В последующие годы исследователи обнаружили, что концы Y-хромосомы человека светятся ярче любой другой хромосомы человека, поэтому Y-хромосому легко заметить на препарате.

Акрихиниприт преимущественно связывается с ГЦ-парами ДНК. Флюоресцируют отдельные диски гетерохроматиновых участков. Уда­ляют ДНК — свечение исчезает. Составлены карты флюоресцирующих хромосом. Из 27 видов млекопитающих только у человека, шимпанзе, гориллы и орангутанга светятся Y-хромосомы. Свечение связано с повторами генов, которые появились в эволюции 20 млн. лет назад.

Итак, в норме в соматических клетках человека находится 46 хромосом (23 пары), а в половых — 23 хромосомы, по одной хромо­соме каждой пары. При слиянии сперматозоида и яйцеклетки в зиготе количество хромосом удваивается. Таким образом, каждая сомати­ческая клетка организма человека содержит один набор отцовских хромосом и один набор материнских хромосом. Если у человека 46 хромосом, то у различных обезьян число хромосом равно 34, 42, 44, 54, 60, 66.

При действии ультразвука или высокого давления можно добиться разрыва нитей ДНК, которые входят в состав хромосомы, на отдель­ные фрагменты. Подогревая растворы ДНК до температуры 80—100°,

можно вызвать денатурацию ДНК, расхождение двух составляющих ее нитей. При определенных условиях разъединенные нити ДНК могут снова реассоциировать в устойчивую двунитчатую молекулу ДНК (реассоциация или ренатурация ДНК). Денатурацию и ренатурацию ДНК можно получить и на препаратах фиксированных хромосом, обрабатывая их соответствующим образом. Если после этого хромосо­мы окрасить красителем Гимза, то в них выявляется четкая поперечная исчерченность, состоящая из светлых и темных полос. Расположение этих полос в каждой хромосоме разное. Таким образом, по «Гимза-дискам» можно также идентифицировать каждую из 23 пар хро­мосом.

Этими и другими методиками, особенно гибридизацией соматиче­ских клеток различных животных и человека, пользуются для картиро­вания хромосом, т. е. для определения положения разных генов в той или иной хромосоме. В настоящее время в аутосомах и половых хро­мосомах человека картировано около 200 генов.

На конец 1975 г. было локализовано следующее количество генов в различных хромосомах человека (А. Ф. Захаров, 1977): 1 хромосома — 24 гена; 2 хромосомы — 10, 3—2, 4—3, 5—3, 6—14, 7—4, 8—1, 9—8, 10—5, 11—4, 12—10, 13—3, 14—3, 15—6, 16—4, 17—14, 18—1, 19—4, 20—3, 21—4, 22—1; Y-хромосома — 2; Х-хромосома — 95 генов.

Глава 4. Половой хроматин.

В 1949 г. М. Барр и Ч. Бертрам, изучая нейро­ны кошки, обратили внимание на то, что в интерфазном ядре клетки содержится интенсивно окрашиваемое тельце, причем оно присутствует только в ядрах клеток самок и отсутствует у самцов. Оно было найдено у многих животных и всегда только у особей женского пола. Это тельце получило название полового хроматина, или тельца Барра. У ряда позвоночных и у человека оно появляется в раннем онтогенезе на стадии гаструлы, но раньше развития гонад (половых желез). На локализацию, форму и структуру полового хроматина не влияют поло­вые гормоны, следовательно, он не является вторичным половым признаком. Между числом телец полового хроматина и числом X-хромосом в ядре имеется прямая связь. Половой хроматин в интер­фазных ядрах обусловлен спирализацией одной из Х-хромосом, инактивация которой является механизмом, выравнивающим баланс генов половых хромосом в клетках самцов и самок (т. е. это один из механиз­мов дозовой компенсации генов).[6]

В 1961 г. несколько исследователей одновременно высказали предположения, что одна из Х-хромосом у нормальных женщин отно­сительно не активна в генетическом отношении. В 1961 году англий­ская исследовательница М. Лайон выдвинула гипотезу о механизмах инактивации одной из Х-хромосом клеток женского организма. Основ­ные положения этой гипотезы следующие:

1. Одна из двух Х-хромосом клеток женщины неактивна.

2. Неактивная хромосома может быть отцовского или материнского организма.

3. Инактивация происходит в раннем эмбриогенезе и сохраняется во время дальнейшего размножения и развития клеточной линии. Этот процесс инактивации Х-хромосомы в ряду поколений обратим:

XX* ->- УХ -> XX* и т. д. (здесь звездочкой обозначена спирали-зованная Х-хромосома). Такой тип обратимых изменений генетического материала португальский генетик Серра предложил называть трепцией (от греч. treptos — изменение).

Спирализованная Х-хромосома в клетке образует половой хроматин или тельце Барра. Если у женщин в ядре клетки несколько Х-хромосом, то в клетках несколько телец Барра, активной остается лишь одна Х-хромосома. Х-хромосома инактивируется не вся, часть коротко­го плеча остается генетически активной. Инактивация Х-хромосомы в определенной мере зависит от стадии клеточного цикла и физиологи­ческого состояния организма. По наличию лишнего или отсутствию тельца Барра можно диагносцировать некоторые виды наследствен­ных заболеваний (например, синдром Клайнфельтера, синдром Шерешевского — Тернера). Клетки, не содержащие половой хроматин (хроматин-отрицательные клетки), обнаруживаются у индивидуумов, имеющих набор хромосом 45, ХО (синдром Шерешевского — Тернера);

46, XY (нормальные мужчины); 47, XYY (синдром Клайнфельтера с двумя Y-хромосомами). Обычно в клетках нормального мужского организма встречается некоторое количество псевдотелец Барра (конденсированных участков аутосом) и спирализованных Y-хромосом, поэтому при диагностике различных хромосомных заболева­ний необходимо уметь отличать эти образования от типичного полового хроматина, образованного спирализованной лишней Х-хромосомой. Тельце Барра обнаруживается при хромосомном наборе 46, XX (нормальные женщины); 47, ХХУ и 48, ХХУУ (клас­сический синдром Клайнфельтера). Два тельца Барра обнаруживаются у человека, имеющего три Х-хромосомы, (47, XXX); три Х-хромосомы и одну У (48, ХХХУ, синдром Клайнфельтера); 49, ХХХУУ (синдром Клайнфельтера). Три тельца Барра встречаются при кариотипе 48, ХХХХ и 49, ХХХХУ (тяжелый синдром Клайнфельтера).

В полиплоидных клетках число телец полового хроматина соот­ветствует плоидности. По формуле Гарднера, число телец Барра (В)

Подпись: P
2


равно В = Х — , где Х — число Х-хромосом, Р — степень плоид­ности клетки. В неполиплоидных клетках число телец полового хромати­на равно числу Х-хромосом минус единица (В = Х — 1).

Структурные изменения хромосом

Хромосомы могут подвергаться различным структурным измене­ниям. Особенно важное значение имеют потеря отдельных фрагмен­тов хромосом (деления) или перенос участка одной хромосомы на дру­гую (транслокация). Транслокация обозначается латинской буквой /, в скобках рядом с ней пишут индекс группы или номер хромосомы-донора, обозначение переносимого участка. Эти же обозначения ука­зываются для хромосомы-реципиента, например 46, XXt (Ср + + В4q —). В скобках буквами р и q указывают плечи хромосом, затрагиваемые транслокацией. Короткое плечо хромосомы обозна­чают буквой р, длинное — буквой q, спутник — буквой s, и т. д. Уве­личение длины плеча обозначается знаком плюс, а уменьшение — зна­ком минус (оба они ставятся после символа хромосомы).

Появление одной лишней хромосомы в кариотипе приводит к трисомии. Кратное увеличение числа всех хромосом носит название поли­плоидии (могут быть триплоиды, тетраплоиды и т. д.). Потеря одной из пары гомологичных хромосом приводит к состоянию, которое на­зывается моносомией. Изменения числа или строения хромосом назы­вается хромосомными аберрациями.

Рассмотрим наиболее частые виды структурных нарушений хро­мосом — делеции и транслокации. При делеции общее количество хромосом не изменено. Однако в какой-то хромосоме недостает гене­тического материала, что вызывает различные изменения фенотипа. Чаще всего встречается делеция 5-й и 18-й аутосом и Х-хромосомы. Делеции приводят к развитию различных наследственных заболеваний и синдромов.

В 1963 г. Ж. Лежен описал синдром «кошачьего крика». Крик таких детей напоминает «мяуканье кошки». У детей резкое недораз­витие гортани, круглое лунообразное лицо, микроцефалия, микрогнатия, монголоидный разрез глаз, низко расположенные деформированные ушные раковины, мышечная гипотония, слабо выраженные вторичные половые признаки. Эти дети умственно отсталые. В кариотипе детей отмечается делеция короткого плеча 5-й пары хромосом.

Деления длинного и короткого плеча 18-й хромосомы сопровож­дается различными нарушениями строения лица, скелета, внутренних органов. У детей отмечается умственная отсталость, гипотрофия, гипотония, микроцефалия, недоразвитие лица, низкий грубый голос, недоразвитие наружных половых органов, среднего уха, атрезия наружного слухового прохода и другие аномалии.

При делеции короткого плеча 18-й хромосомы у больных также отмечаются различные дефекты со стороны скелета, внутренних орга­нов и умственная отсталость.

Делеция короткого плеча Х-хромосомы может трактоваться как частичная моносомия по Х-хромосоме. Описана у женщин, у которых наблюдается задержка роста, недоразвитие яичников без тяжелых соматических аномалий. Хотя половой хроматин у них выявляется, однако его размеры значительно меньше, чем в норме.

При хронических миелолейкозах отмечается укорочение корот­кого плеча 21-й хромосомы (так называемая филадельфийская хро­мосома). Однако эта хромосома обнаруживается только в клетках крови и пунктате костного мозга. Другие же клетки имеют нормальный кариотип.

В результате двух концевых нехваток с последующим соединением разорванных концов образуются кольцевые хромосомы. Поэтому дан­ное нарушение структуры хромосом фактически является частным случаем делеции. Клиническая картина больных — носителей кольце­вых хромосом — напоминает таковую при делеции соответствующей хромосомы. Так, при кольцевой хромосоме группы В (5-я пара) раз­вивается клиническая картина синдрома «кошачьего крика», а при кольцевой Х-хромосоме клиническая картина близка синдрому Шерешевского — Тернера.

Транслокации — это структурные перестройки, при которых про­исходит обмен генетического материала между хромосомами. Возмож­ны различные виды транслокаций: реципрокные, при которых про­исходит взаимный обмен фрагментами; нереципрокные, когда генети­ческий материал одной хромосомы переносится на другую, и наконец центрические соединения. Наиболее часто встречаются именно пос­ледние транслокации между акроцентрическими хромосомами. При этом утрачивается только небольшой фрагмент коротких плечей акроцентрических хромосом. Большую часть таких перестроек можно считать сбалансированной, так как они не вызывают серьезных откло­нений в фенотипе носителя транслокации. Однако потомство таких носителей имеет клинически выраженные дефекты, характерные для аномального набора хромосом.

Известно, что болезнь Дауна может наблюдаться как при трисомии по 21-й аутосоме, так и при транслокации фрагмента этой хромо­сомы на другие. У таких больных хромосом 46, но одна из хромосом фактически двойная, так как к ней еще прикреплен фрагмент 21-й хромосомы и в результате такая перестройка оказывается не сбалан­сированной. У родителей этих больных кариотип включал 45 хромосом, но одна из хромосом была фактически двойной (с транслокацией). При оплодотворении яйцеклетки, содержащей эту хромосому, нормаль­ным спермием в зиготе фактически будут три 21-х хромосомы, что фенотипически проявляется болезнью Дауна.

21-я хромосома чаще всего транслоцируется на 15-ю или на дру­гие хромосомы группы Д (13-ю, 14-ю) у женщин, или на 22-ю у муж­чин. В таком случае у молодых здоровых родителей может ро­диться ребенок с болезнью Дауна в отличие от трисомии 21-й хро­мосомы, которая чаще бывает у детей, рожденных пожилыми мате­рями. Определить наличие транслокации у индивидуума до рождения ребенка с болезнью Дауна без исследования кариотипа фактически невозможно, так как фенотип этих носителей мало чем отличается от фенотипов лиц с нормальными генотипами. Поэтому во всех этих слу­чаях исследование кариотипа имеет особенно важное значение.

Механизм развития болезни Дауна при транслокации у одного из родителей можно представить следующим образом. При трансло­кации кариотип индивидуума состоит из 45 хромосом, так как одна хромосома увеличена в размере. Транслокация касается всех клеток, в том числе и оогоний и сперматогоний. При образовании половых клеток (гамет) в одну гамету попадает 23 хромосомы, а в другую 22. Но транслоцированная хромосома может оказаться как в гамете с 22 хромосомами, так и в гамете с 23 хромосомами. Таким образом, те­оретически возможны 4 варианта гамет: 23 нормальные хромосомы, 23 с транслокацией, 22 нормальные хромосомы и 22 с транслокацией. Если транслокацию обозначить апострофом, то получится следующий ряд гамет: 23 231  22  221.

Если эти гаметы будут оплодотворены нормальной гаметой про­тивоположного пола, то получим следующие комбинации: 1) 23 + 23 = = 46 хромосом (нормальный кариотип); 2) 231 + 23 = 461 хромосом, но фактически 47 хромосом (в данном случае разовьется болезнь Дау­на); 3) 22 + 23 = 45 хромосом (такая зигота не жизнеспособна и по­гибает); 4) 221 +23 = 451 хромосом (в этом случае рождается ин­дивидуум с транслокацией, как и один из его родителей).

Шансы родить ребенка с болезнью Дауна (при транслокации у одного из родителей) составляют 33%. Это очень большой риск и в таком случае дальнейшее деторождение не желательно, тем более что есть риск получить транслокацию и у внуков. Если рождается ребе­нок с болезнью Дауна, вызванной трисомией по 21-й хромосоме, у родителей с нормальным кариотипом, то шансы родить повторно та­кого же ребенка очень незначительны. Однако не во всех случаях при рождении ребенка с болезнью Дауна вследствие транслокации 21-й хромосомы транслокация имеется в соматических клетках ма­тери. Примерно у половины матерей кариотип бывает нормаль­ный, а транслокация произошла во время мейоза, предшествующего образованию яйцеклетки, из которой развился организм больного ребенка.

Глава 5. Мозаицизм.

Это состояние, когда в организме перемешаны клетки с нормальным и аномальным кариотипами, скажем, 46/47 или 46/45. Возникает оно вследствие нерасхождения хромосом на начальных этапах эмбрионального развития. Мозаицизм дает стертые, слабо выраженные симптомы заболевания по сравнению с больными, у которых изменен кариотип во всех клетках. Больной с мозаичным ва­риантом болезни Дауна может иметь только некоторые физические признаки этого заболевания. Развитие интеллекта не нарушено. При мозиацизме 45ХО/46ХХ синдром Шерешевского — Тернера выражен более мягко. У таких больных возможно развитие тканей яичников и овуляция. При кариотипе 46ХУ/47ХХУ более мягко выражен синд­ром Клайнфельтера. Среди больных женщины- и мужчины-мозаи­ки с указанными кариотипами встречаются чаще, чем «чистые» слу­чаи синдрома Шерешевского — Тернера или синдрома Клайнфельтера. С возрастом клон аномальных клеток постепенно элиминируется, и поэтому трудно установить мозаицизм в пожилом возрасте, хотя в эмбриональном и раннем постэмбриональном периоде он был выражен достаточно и мог привести к развитию фенотипических признаков заболевания. Чем меньше в организме аномальных клеток, тем слабее выражены признаки заболевания. Этим можно объяснить стертые и рудиментарные формы данных заболеваний.[7]

При заболеваниях крови может происходить кратное (полиплоидия) или некратное (анэуплоидия) увеличение количества хромосом. Однако оно наблюдается только в клетках крови, а в других же соматических клетках кариотип нормальный.


Список использованной литературы.

1.   Бердышев Г.Д., Криворучко И.Ф. Генетика человека с основами медицинской генетики. – Киев: Вища школа, 1979.

2.   Бочков Н.П. Генетика человека. – Москва, 1973.

3.   Фогель Ф. Мотульски А. Генетика человека: история хромосомы человека, формальная генетика. Москва: Мир, 1989.

4.   Штерн, Курт Основы генетики человека. Москва: Медицина, 1965

5.   Маккьюсик В. Генетика человека. Москва: Мир, 1967.


[1] Генетика человека с основами медицинской генетики. Бердышев Г.Д., Криворучко И.Ф. с.5-21

[2] Генетика человека: история хромосомы человека, формальная генетика. Фогель Ф. Мотульски А. с.11-19

[3] Генетика человека: история хромосомы человека, формальная генетика. Фогель Ф. Мотульски А. с.23-31

[4] Генетика человека. Бочков Н.П. с. 44

[5] Генетика человека. Маккьюсик. В. с.10, 13-22

[6] Основы генетики человека. Штерн, Курт. с.41-60

[7] Генетика человека. Бочков Н.П. с.90


Информация о работе «Кариотип человека»
Раздел: Медицинские науки
Количество знаков с пробелами: 73959
Количество таблиц: 1
Количество изображений: 3

Похожие работы

Скачать
40345
0
1

... индивидуальных хромосом; - накапливать сведения об изменениях хромосом в опухолевых клетках, у больных с наследственными заболеваниями крови и т.д. Главный недостаток методов, основанных на использовании низших организмов, заключается в невозможности экстраполировать полученные результаты на человека в связи с отсутствием процессов метаболической активации и детоксикации, характерных для всех ...

Скачать
37903
3
6

... к дочери. Голандрический признак передаётся от отца – сыну, т. е. Только по мужской линии. Геном - совокупность гаплоидного (1п) набора хромосом (23 хромосомы). 4. Мутационный процесс и наследственные заболевания человека: а) механизм генных мутаций. Болезни обмена веществ и молекулярные болезни человека. Наследование генных аномалий. Мутации происходят на каждом из перечисленных уровней, и ...

Скачать
28500
0
0

... человеческой линии эволюции с африканскими человекообразными обезьянами произошло значительно позже, чем 13 млн. лет назад. В последние годы антропогенез эффективно изучают также биомолекулярными методами. В основе этих методов изучения эволюции лежит допущение, что мера сходства двух таксонов соответствует мере их родства. Поэтому организмы, имевшие общего предка в недалеком прошлом, будут ...

Скачать
10575
0
0

... Далее она передавалась в рецессивной форме по материнской линии. Среди европейцев 0,01 % мужчин больны гемофилией. Генеалогическими методами установлена возможность наследования некоторых дарований человека, например способности к музыке, математике. Музыкальный талант в родословной Бахов проявлялся неоднократно. Степень проявления таланта, разумеется, зависит от сочетания других психофизических ...

0 комментариев


Наверх