2.3.2. Гипокинезия на клеточном уровне

 

Какими механизмами порождаются видимые невооруженным глазом расстройства физиологических функций при гипокинезии? Ответ на этот вопрос получен при исследовании внутриклеточных меха­низмов роста и развития организма.

Многочисленные экспериментальные факты свидетель­ствуют о том, что гипокинезия для теплокровных животных и человека является стрессорным агентом. Аварийная стресорная фаза экспериментальной гипокинезии продолжается с первых по пятые сутки. Для нее характерно резкое повы­шение продукции катехоламинов и глюкокортикоидов, пре­обладание катаболических процессов. Вес животных падает. Наиболее интенсивному разрушительному влиянию на этой стадии подвергается тимус вследствие миграции лимфоци­тов, составляющих около 90% его клеточных популяций. Повышенная чувствительность лимфоцитов к стресс-гормонам может рассматриваться как главная причина их мигра­ции и падения массы тимуса.

В последующие 10 суток разрушительному воздействию подвергаются селезенка и печень. Практически неизменными остаются полушария большого мозга. С 30-х по 60-е сутки гипокинезии вес животных стабилизируется, но, как пока­зали исследования, останавливается нормальный физиологический рост. Содержание нуклеиновых кислот в клетках коррелирует с процессами роста животных и его остановкой при гипоки­незии.

Менее всего подвержен влиянию гипокинезии головной мозг. В первые 10 дней гипокинезии в нем отмечается увеличение ДНК при сохранении исходного уровня РНК. Концентрация и общее содержание РНК в сердце снижается, что приводит к нарушению биосинтеза белка в миокарде. Отношение РНК/ДНК падает, следовательно, уменьшается и скорость транскрипции (считывания программы биосинтеза) с генетических матриц ДНК. В первые 20 суток гипокинезии падает и абсолютное содержание ДНК, начинаются деструк­тивные процессы в сердце.

С 20-х по 30-е сутки содержание ДНК в сердце растет. Этот рост связан с ее увеличением в эндотелии и фибро­бластах сердца (60 % ДНК сердца находится в фибробластах и эндотелиальных клетках, 40% - в мышечных клетках – кардиомиоцитах). Известно, что количество мышечных кле­ток сердца с 20-х суток постнатального онтогенеза не увели­чивается.

С 30-х по 60-е сутки прироста содержания ДНК в сердце не происходит. Снижается плоидность кардиомиоцитов. В нор­мальных условиях жизнедеятельности число кардиомиоци­тов, имеющих более двух ядер, увеличивается. Следователь­но, активность генетического аппарата клетки находится в тесной связи с интенсивностью ее функционирования, а гипокинезия выступает как фактор торможения биосинтеза. Особенно демонстративны эти изме­нения в скелетных мышцах: если при нормальном содержании животных количество РНК за 2 месяца увеличивается на 60 %, то при двухмесячной гипокинезии становится ниже нормы.

Концентрация нуклеиновых кислот в печени при гипоки­незии остается на уровне нормы, но снижается их абсолютное (т. е. на массу всего органа) содержание. В печеночной ткани наблюдаются дистрофические изменения, падает количество полиплоидных и делящихся клеток, т. е. клеток с увеличиваю­щимся количеством ДНК, угнетается синтез матричной и рибосомальной РНК. Снижение общего количества ДНК – результат гибели части клеток печени.

В тимусе и селезенке начиная с первых дней гипокинезии и до 20-х суток падает и концентрация, и общее содержание нуклеиновых кислот.

Содержание и скорость биосинтеза белковых структур клетки тесно связаны с изменениями количества ДНК и РНК. В первые 20 дней гипокинезии отмечается преобладание ката-болических процессов в клетках и тканях экспериментальных животных. Вследствие деструктивных изменений в клетках тимуса и печени, скелетных мышц, концентрация катепсина Д, фермента распадающихся тканевых белков, уже к третьим суткам гипокинезии превышает уровень контроля в два раза.

С 20-х по 30-е сутки гипокинезии наблюдается стабилиза­ция белкового состава внутренних органов. В клетках печени и кардиомиоцитах количество белка начинает расти, но в по­следующие дни – от 30-го до 60-го — уровень его остается стабильным.

Возвращение в условия нормальной жизнедеятельности после гипокинезии приводит к активизации биосинтеза нукле­иновых кислот и белка. В тимусе уже к десятым суткам восстановительного периода их содержание достигает уровня контрольных животных. В скорости восстановительных про­цессов проявляется одна из закономерностей биологического развития: низкодифференцированные структуры восстанавли­ваются быстрее, чем высокодифференцированные. К концу 30-го дня восстановительного периода подопытные живот­ные практически не отличались от контрольных. Этот факт убедительно свидетельствует о том, что гипокинезия не вызывает необратимых изменений в генетическом аппарате клетки.


 

Глава 3. Потребление кислорода как биохимический критерий гиподинамии

Жизненный комфорт современного человека вызвал резкое ограничение ежедневной двигательной активности, что приводит к отрицательным изменениям в деятельности различных систем организма. Особенно большие изменения в условиях дефицита движений проис­ходят в сердечно-сосудистой и дыхательной системах.

Определив уровень потребления кисло­рода, можно оценить функциональные воз­можности кардиореспираторной системы современных школьников.

Гиподинамия отрицательно влияет как на взрослых, так и на детей и подрост­ков. Систематическое обследование детей школьного возраста позволило у трети из них обнаружить патологию сердечно-сосу­дистой системы. Это указывает на необхо­димость принятия срочных мер, направлен­ных на усиление двигательной активности растущего организма.

Сегодня, изучив предельные возмож­ности систем дыхания и кровообращения у человека, можно определить максималь­ное потребление кислорода (МПК). По мнению Всемирной организации здравоох­ранения, МПК — один из наиболее инфор­мативных показателей функционального состояния кардиореспираторной системы. А так как системы кровообращения и дыха­ния – ведущие в процессах аэробного энер­гообеспечения, то по их показателям судят также о физической работоспособности организма в целом.

Обычно МПК определяют в лаборатор­ных условиях. Каждый испытуемый в течение 6-8 мин на велоэргометре выполняет предельную трехступенчатую работу нарастающей мощности. На последней минуте, когда частота сердечных сокращений (ЧСС) достигает 180-200 уд/мин, выды­хаемый воздух забирают в так называемые мешки Дугласа, анализируют его и после определения минутного объема дыхания рассчитывают максимальное потребление кислорода. Полученную величину делят на массу тела (кг) – это и есть показатель максимального потребления кислорода (МПК/кг), который объективно отражает работоспособность человека.

На основании экспериментального ма­териала, опубликованного в специальной литературе, можно оценить работоспособ­ность школьников обоего пола, исходя из относительных величин МПК (см. Приложение 2, табл.2).

Изучив функциональные возможности кардиорееппраторной системы, мы полу­чили доказательства, что у современных школьников постепенно снижаются от­носительные величины МПК, а, следова­тельно, ухудшается физическая работоспособности. Оказалось, что функциональ­ные возможности кардиореспираторной системы современных школьников ниже, чем их сверстников и 1950-1970-х годах. Особенно заметны сдвиги у девочек, у которых отмечено снижение с возрас­том исследуемого показателя. В возрасте 9-10 лет физическая работоспособность школьниц оценивалась как удовлетворительная (37,8 мл/кг), а в 15-16 лет – неудовлетворительная (29,9 мл/кг). Ухуд­шение функциональных возможностей систем кровообращения и дыхания со­провождалось постепенным увеличением с возрастом жировой ткани (в организме девочек в возрасте 9-10 лет содержание жира составляло свыше 24% от всей мас­сы тела, в 13-14 – свыше 25%, а в 15-16 лет – около 29%).

Снижение функциональных возможностей кардиореспираторной системы совре­менных школьников в основном связано с гиподинамией. Обнаружено, что с возрас­том двигательная активность (ДА) имеет тенденцию к снижению, особенно четко выраженную у девушек. Отмечено, что сре­ди детей всех возрастов есть подвижные дети, с высоким уровнем ДА, выполняющие в день 18 тыс. шагов, и малоподвижные, с низким уровнем двигательной активности, совершающие менее 11 тыс. шагов.

В результате определения МПК/кг у де­тей с разным уровнем ДА выявлено четкое изменение этого показателя в зависимости от физической активности детей. Школьни­ки, выполняющие от 12 до 18 тыс. шагов в день, имели достоверно большие величины МПК/кг, чем их малоподвижные ровесни­ки. Эта разница в активности свидетельству­ет о том, что выполнение в день менее 12 тыс. шагов приводит к развитию гиподинамии. Об этом говорят результаты обследования школьников обычной и школы полного дня, которая отличалась не только организаци­ей учебного процесса, но и двигательным режимом дня. В школе полного дня между уроками практиковалась так называемая «динамическая пауза» и во второй полови­не дня – спортивный час. Во всех возраст­ных группах обеих школ с 9 до 16 лет отмечены достоверные различия в относительных показателях МПК/кг.

Методом непрямой калориметрии мы оцепили энергетическую стоимость 11 тыс. шагов. Оказалось, что мальчики 7-9 лет на 1 тыс. шагов тратили 21 ккал, а 14-16 лет – 42 ккал; девочки 7 лет-9 19 ккал, а 14-16 лет – 35 ккал. Повышение с возрас­том энергозатрат связано не только с тем, что у школьников старших классов шаг ста­новится шире и размашистее, по и г тем, что большая энергостоимость связана с неодинаковым процентным содержанием скелетных мышц в организме детей и подростков. У ребенка в возрасте 10 лет из всей массы тела на скелетные мышцы приходит­ся 20%, а у 14-летних – 26%.

Исходя из приведенных данных, нетруд­но рассчитать, сколько энергии тратят школьники различного возраста и пола на 11 тыс. шагов. Если учесть, что мальчики в возрасте 10-16 лет расходуют в сутки 2200-2900 ккал, а девочки 2000-2700 ккал и что 25-30% этих энергозатрат должно при­ходиться на двигательную активность, то становится очевидным дефицит движении, который создается при выполнении 10-11 тыс. шагов, приводящий к значительному снижению аэробных возможностей орга­низма. Следовательно, ДА и максимальное потребление кислорода находятся в пря­мой зависимости: чем выше число локомоций (ходьба), тем лучше функциональное состояние кардиореспираторпой системы.

 

Глава 4. Роль физической активности в сохранении здоровья

 

Движение было необходимым условием для выживания организмов на про­тяжении длительной эволюции, приведшей к становлению челове­ка. Добывание пищи, поиски условий комфорта, уход от опас­ности требовал большой мышечной активности. Она достигалась не только усиленной работой нервных центров, но и гуморальной регуляцией. Любое напряжение сопровождалось выделением боль­шого количества адреналина, норадреналина и других гормонов, которые обеспечивали напряженную работу сердца, легких, пече­ни и других органов, позволявших снабжать мышцы глюкозой, кислородом и другими необходимыми веществами, а также осво­бождать организм от шлаков.

Сейчас, когда у людей сидячих профессий и учащихся мышеч­ная работа уменьшилась, нервные напряжения остались и даже усилились. При нервных нагрузках по-прежнему выделяются в кровь гормоны, но они не разрушаются так быстро, как при уси­ленной мышечной работе. Избыток гормонов действует на нервную систему человека, лишает его сна, поддерживает его беспокойное состояние. Человек в своих мыслях все время возвращается к тревожным ситуациям, как бы проигрывает их в своем сознании, а это уже подходящая почва для неврозов и даже для телесных заболеваний: гипертонии, язвы желудка и пр. Спокойная мышеч­ная работа, особенно после нервных перегрузок, позволяет раз­рядить напряжение, так как при этом разрушаются гормоны, они перестают влиять на нервные центры, а усталость способствует быстрому наступлению сна. Вот почему физическая активность во многих случаях позволяет нам улучшить свое настроение, вер­нуть утраченное спокойствие.

Но дело не только в этом. В нашем организме непрерывно идут процессы обмена веществ. Часть всосавшихся в кишечнике веществ идет на построение элементов клеток и тканей, на син­тез ферментов. Другая часть распадается и окисляется с освобож­дением энергии. Эти процессы тесно связаны между собой. Чем сильнее идут процессы распада и окисления, тем интенсивнее идут процессы создания новых веществ. Если же обнаруживается несоответствие между поступлением питательных веществ и энерготратами, то избыток всосавшихся веществ идет на образование жира. Он откладывается не только под кожей, но и в соединитель­ной ткани, которая нередко замещает специализированные ткани: мышечную, печеночную и др.

Совершенно иначе обмен веществ идет при достаточной мы­шечной активности. Длительный и интенсивный труд обычно ведет к некоторым изменениям в клетках и тканях, даже к частичному их разрушению. Однако освободившейся в ходе распада и окис­ления органических веществ энергии достаточно не только для восстановления разрушенных частей, но и для синтеза новых элементов. В результате приобретается много больше, чем было потеряно. Но всему есть свой предел. Если работа слишком интен­сивная, а отдых после нее недостаточен, то восстановления раз­рушенного и синтеза нового не будет.

Следовательно, тренировочный эффект будет проявляться не всегда. Слишком малая нагрузка не вызовет такого распада веществ, который смог бы стимулировать синтез новых, а слишком напряженная работа может привести к преобладанию распада над синтезом и к дальнейшему истощению организма. Трениро­вочный эффект дает лишь та нагрузка, при которой синтез белков обгоняет их распад. Вот почему для успешной тренировки важно рассчитывать затрачиваемые усилия. Они должны быть достаточ­ными, но не чрезмерными. Только при этих условиях растет функциональная мощность органа и организма в целом. Другое важное правило состоит в том, что после работы необходим обязательный отдых, позволяющий восстановить утраченное и приобрести новое.

Сейчас медицине известны вещества, которые могут резко под­нимать на короткое время нервную и мышечную силу, а также препараты, стимулирующие синтез мышечных белков после дей­ствия нагрузок. Первая группа препаратов получила название допингов (от англ. dope — давать наркотик). В спорте примене­ние этих веществ категорически запрещено не только потому, что спортсмен, принявший допинг, имеет преимущество перед тем спортсменом, который его не принимал, и его результаты могут оказаться лучшими не за счет совершенства техники, мастерства, труда, а за счет приема препарата, но и потому, что допинги очень вредно действуют на организм. За временным повышением работоспособности может последовать полная инвалидность. (Впервые допинг стали давать лошадям, участвующим в скачках. Они действительно показывали большую резвость, но после скачек никогда не восстанавливали свою прежнюю форму, чаще, всего их пристреливали. Дельцам важен был выигрыш в тотализатор, не­редко более крупный, чем стоимость самой лошади).

Что касается веществ второго типа, то они находят примене­ние в медицине, например при восстановлении мышечной деятель­ности после того, как снят гипс, наложенный после перелома кости. В спорте эти вещества находят ограниченное применение.

Беспредельны ли спортивные результаты? Все ли люди способ­ны даже при самых правильных тренировках стать знамениты­ми спортсменами? Оказывается, нет. Люди обладают различны­ми наследственными задатками, и потому их спортивные достиже­ния не одинаковы. В одних видах спорта они более значительны, чем в других. Поэтому очень важно найти именно тот вид спорта, который окажется для человека наиболее перспективным.


 

Заключение

 

Физическая культура - неотъемлемая часть жизни человека. Она занимает достаточно важное место в учебе, работе людей. Занятием физическими упражнениями играет значительную роль в работоспособности членов общества, именно поэтому знания и умения по физической культуре должны закладываться в образовательных учреждениях различных уровней поэтапно.

Здоровье – великое благо, недаром народная мудрость гласит: «Здоровье – всему голова!». Физическая активность является одним из самых могучих средств предупреждения заболеваний, укрепления защитных сил организма. Ни одно лекарство не поможет человеку так, как последовательные и систематические занятия физкультурой.

В последнее время отмечается огромный рост популярности оздоровительных физических упражнений, никогда люди так не увлекались различными формами оздоровительной физкультуры всей семьей как это происходит сегодня.

 


 

Список использованной литературы

 

1.   Вайнбаум Я.С. Дозирование физических нагрузок школьников. – М.: Просвещение, 1991, 64 с.

2.   Ермолаев Ю.А. Возрастная физиология. Учебное пособие для студентов педагогических вузов. – М.: Высшая школа, 1985, 384 с.

3.   Колесов Д.В., Марин Р.Д. Основы гигиены и санитарии. Учебник для 9-10 класса средней школы. – М.: Просвещение, 1989, 192 с.

4.   Лукьянов В.С. О сохранении здоровья и работоспособности. – М.: Медгиз, 1952, 136 с.

5.   Солодков А.С., Сологуб Е.Г. Физиология человека общая, спортивная, возрастная. – М.: Тера-спорт, 2001, 520 с.

6.   Смирнов В.Н., Дубровский В.И. Физиология физическое воспитание и спорт. Учебник для студентов средних и высших заведений. – М.: Владос-пресс, 2002, 608 с.

7.   Фомин Н.А., Вавилов Ю.Н. Физиологические основы двигательной активности. – М.: Физкультура и спорт, 1991, 224 с.


Приложение 1

Таблица 1

 

Гигиеническая суточной двигательной активности школьников норма (по А. Г. Сухареву)

Возрастные

группы, лет

Локомоции

(число шагов), тыс.

Величина энергозатрат,

ккал/сут

Продолжительность,

ч

8—10 (оба пола)

13 — 14 (оба пола)

25-17 юноши

25-17 девушки

15—20

20—25

25—30

2530

2500—3000

3000—4000

3500—4300

3000—4000

3,0—3,6

3,6—4,8

4,8—5,8

3,6—4,8


 

Приложение 2

Таблица 2

Оценка физической работоспособности школьников по показателю МПК

Показатель МПК/кг

Оценки работоспособности

Мальчики

Девочки

55-60 45-50 Отлично
50-54 40-44 Хорошо
45-49 35-39 Удовлетворительно
44 и ниже 34 и ниже Неудовлетворительно

Информация о работе «Гиподинамия, гипокинезия»
Раздел: Физкультура и спорт
Количество знаков с пробелами: 45342
Количество таблиц: 3
Количество изображений: 0

Похожие работы

Скачать
63018
0
0

... . Им присуще - ограничение двигательной активности, большое напряжение высших отделов ЦНС, психическое и эмоциональное напряжение. 3. Значение физической культуры для профилактики гиподинамии Достаточная двигательная активность является необходимым условием  гармонического развития личности.    Физические упражнения способствуют хорошей работе органов пищеварения, помогая перевариванию и ...

Скачать
94441
1
0

... желания, случайных кусков, ограничивая количество и калорийность съедаемой пищи, мы тем самым снижаем активность соответствующего центра в головном мозгу, и убавится аппетит. Культура питания является неотъемлемой частью здорового образа жизни. Можно с уверенностью сказать, что в недалеком будущем о культуре человека будут судить не только по тому, как он пользуется столовыми приборами, но и по ...

Скачать
18135
0
0

... значение имеет физическая активность, регулярная мышечная деятельность, лежащая в основе жизнедеятельности всего организма. В настоящее время очень актуальна проблема гиподинамии. Под гипокинезией и гиподинамией понимают недостаточность функционирования мышечной системы человека. Гипокинезия означает уменьшение двигательной деятельности с ограничением пространственных характеристик движения, а ...

Скачать
8270
0
0

ей выраженности и последствиям оно может быть различным, и обусловлено условиями работы человека, длительностью и степенью недостаточности мышечных нагрузок. Гиподинамия в сочетании с другими факторами может явиться предпосылкой к возникновению целого ряда болезненных состояний и даже заболеваний. Уменьшение двигательной активности, прежде всего, вызывает снижение энергозатрат, замедление распада ...

0 комментариев


Наверх