1.4. Структурно-агрегатный состав южных черноземов
У большинства вариантов южного чернозема в пахотном горизонте преобладают крупные ( > 10 мм ) агрегаты над более мелкими. Все структурные фракции размером < 10 мм содержатся примерно в одинаковом количестве, что является характерным для южных черноземов.
Аналогичная картина наблюдается и в подпахотном горизонте, однако, с той разницей, что у всех разрезов содержание пылеватой фракции ( < 0,25 мм ) относительно меньше, чем более крупных фракций.
Сопоставляя цифровые данные, характеризующие структуру пахотных и подпахотных горизонтов южных черноземов, а также их структуру с различных угодий ( залежь, пашня ), нетрудно убедиться в том, что естественная структура, присущая этим черноземам, мало распылена в процессе возделывания на них сельскохозяйственных культур. Обусловлено это, по видимому, способностью данных почв. При высушивании после дождей восстанавливать свою структуру, как это было отмечено, в отношении других черноземов. Так как южный чернозем в летний период недостаточно увлажнен, то приведенные в таблице 6 данные будут близки к природным. О структуре южных черноземов в сильно влажном состоянии приблизительно можно составить представление по данным агрегатного анализа, которые тоже приведены в таблице 1.6. Южные черноземы при мокром анализе теряют крупные структурные агрегаты (> 5 мм). Сохраняется ничтожно малое количество агрегатов от 5 до 3 мм, за исключением залежного участка, где зернистая структура не расплывается, а остается в то же количестве, что и 'при сухом просеивании почвенных образцов/1/.
При агрегатном анализе наблюдается увеличение процентного содержания фракций по мере уменьшения их размера. По данным агрегатного анализа, максимальное количество падает на фракцию размером < 0,25 мм. Эта фракция абсолютно и относительно преобладает над всеми другими фракциями, причем содержание ее в пахотном горизонте несколько выше, чем в подпахотном горизонте. В южных черноземах залежи пылеватой фракции обычно в полтора-два раза меньше, чем в тех же черноземах старопахотных участков.
Из сопоставления данных структурного и агрегатного анализа вытекает, что структура у южных черноземов не является высокопрочной, при сильном увлажнении она расплывается на структурные фракции >. 10 мм. и 10—-5 мм и нацело исчезают и переходят в пылеватую фракцию даже у черноземов залежи. Однако при высыхании почвы структура снова восстанавливается. Длительное использование южных черноземов в сельском хозяйстве отражается главным образом на прочности структуры, которая с течением времени после распашки залежей снижается /1/.
Таблица 1.6
Структурный и агрегатный состав южных черноземов /1/
Разрезы | глубина, см | Структурные агрегаты, мм | |||||||
>10 | 10-5 | 5-3 | 3-2 | 2-1 | 1-0,25 | 0,5-0,25 | <0,25 | ||
Структурный состав | |||||||||
14 | 0-10 | 36,62 | 36,62 | 36,43 | 36,43 | 36,43 | 29,88 | 29,88 | 7,42 |
20-30 | 14,52 | 14,52 | 68,67 | 68,67 | 68,67 | 11,68 | 11,68 | 4,23 | |
45 | 0-10 | 25,02 | 9,27 | 10,22 | 10,52 | 9,66 | 14,7 | 11,30 | 8,20 |
15-20 | 34,48 | 8,34 | 12,96 | 10,28 | 9,12 | 7,76 | 11,44 | 5,62 | |
44 | 0-10 | 30,18 | 13,10 | 7,72 | 5,92 | 7,14 | 10,50 | 11,18 | 14,28 |
22-29 | 25,76 | 13,60 | 7,78 | 5,48 | 8,06 | 13,20 | 15,06 | 11,10 | |
43 | 0-10 | 26,08 | 14,54 | 8,66 | 5,48 | 7,04 | 10,94 | 12,75 | 14,36 |
25-35 | 20,84 | 17,28 | 15,02 | 9,72 | 9,92 | 9,62 | 9,89 | 7,69 | |
Агрегатный состав | |||||||||
14 | 0-10 | -- | -- | -- | 10,46 | 10,46 | 24,5 | 24,5 | 65,04 |
20-30 | -- | -- | -- | 22,96 | 22,96 | 30,0 | 30,0 | 47,04 | |
45 | 0-10 | -- | -- | 11,0 | 10,24 | 4,82 | 15,82 | 20,40 | 38,85 |
15-20 | -- | -- | 12,24 | 10,40 | 5,76 | 14,94 | 19,52 | 37,14 | |
44 | 0-10 | -- | -- | 2,84 | 0,52 | 1,52 | 6,62 | 17,10 | 71,40 |
22-29 | -- | -- | 0,04 | 0,20 | 3,92 | 7,42 | 17,90 | 70,52 | |
43 | 0-10 | -- | -- | 0,06 | 0,14 | 0,38 | 4,94 | 18,26 | 76,22 |
25-35 | -- | -- | 0,12 | 1,24 | 9,84 | 15,06 | 21,32 | 42,42 |
В настоящее время о структурно-агрегатном составе черноземов ЦЧО, его динамике и возможных путях улучшения накоплен значительный фактический материал. Однако большую часть исследований проводили на типичных и обыкновенных черноземах. Другие подтипы черноземов изучены в меньшей степени. Необходимо отметить также и то, что, как правило, исследования проводились на единичных разрезах без достаточного числа повторностей /2/.
Черноземы ЦЧО характеризуются хотя и различными, но в целом вполне благоприятными условиями структурообразования. В них много валового гумуса, отличающегося преобладанием гуминовых кислот, среди которых наибольшую долю составляют гуматы кальция. В почвенном поглощающем комплексе доминирующее значение имеет обменный кальций. Механический состав черноземов чаще всего тяжелосуглинистый и глинистый со значительным количеством илистых частиц, в составе которых преобладают гидрослюды и смешанослойные минералы /2/. Все подтипы черноземов характеризуются высокой микроагрегированностью. В составе почвенной массы преобладают микроагрегаты размером от 0,25 до 0,01 мм, количество которых достигает 60—70% и более. Содержание ила среди микроагрегатов очень низкое и в пахотных горизонтах не превышает 2—4%. Фактор дисперсности (по Качинскому) невелик и изменяется от 5,1—7,1% в верхней части гумусовых горизонтов до 11,9—16,1% в почвообразующей породе /2/.
В табл. 2.1 и 2.2. представлен структурный и агрегатный состав основных подтипов черноземов, определенный по методу Саввинова. Исследуемые почвы в естественном состоянии, т. е. до сельскохозяйственного освоения, характеризуются хорошей структурой. Данные структурного анализа свидетельствуют о значительном содержании агрономически ценных агрегатов размером от 10 до 0,25 мм, количество которых в верхней части гумусового горизонта колеблется в пределах 79,7—93,4%. Среди них большая часть приходится на долю агрегатов, имеющих диаметр от 5 до 1 мм (37,7—58,3%). Вследствие невысокого содержания неценных в агрономическом отношении структурных отдельностей более 10 мм (1,6—7,4%) и микроагрегатов (4,1—13,3%), коэффициент структурности достигает значительной величины и изменяется от 3,9 до 14,2 /2/.
Результаты мокрого просеивания показывают, что структура всех подтипов целинных и залежных черноземов, за исключением оподзолен-ных черноземов, отличается высокой водопрочностью. Количество водопрочных агрегатов в верхней части гумусового горизонта составляет 59,5— 85,5%, из которых на долю агрегатов крупнее 1 мм приходится от 19,4 до 69,5%. Критерий водопрочности агрегатов высокий — 63,7—89,2%. Максимальной степенью водопрочности структуры обладают типичные черноземы целинных участков. Структура оподзоленных черноземов вследствие облегченного механического состава и меньшего содержания гумуса характеризуется в ряду исследуемых почв минимальной водопрочностью: количество агрономически ценных агрегатов в них не превышает 50%, критерий водопрочности агрегатов равен 54,1% /2/.
При распашке целинных и залежных черноземов происходит значительное изменение их структурно-агрегатного состава в сторону ухудшения. Особенно быстро распад структурных комочков происходит в первые 3—5 лет. Отрицательные изменения структурного состава (сухое просеивание) черноземов в результате их сельскохозяйственного использования менее существенны; как правило, возрастает содержание микроагрегатов, и особенно агрегатов крупнее 10 мм. Вследствие этого коэффициент структурности пахотных горизонтов заметно уменьшается по сравнению с целиной и изменяется от 1,2 до 3,1.
Таблица 2.1
Структурный состав черноземов ЦЧО /2/
Почва | Номер и месторасположение разреза, угодье | Глубина, см | Содержание фракций, % Размер, мм | Коэффициент структурности | ||||
более 10 | 10-15 | 5-1 | 1-0,25 | менее 0,25 | ||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Чернозем оподзоленный среднесуглинистый | А-1 Орловская обл., Болховский р-н, залежь | 0-20 30-40 | 5,2 6,1 | 21,0 26,9 | 37,7 36,8 | 25,7 23,3 | 10,4 6,9 | 5,4 6,7 |
То же | А-2 Орловская обл., Болховский р-н, пашня | 0-20 30-40 | 28,0 21,0 | 21,0 19,0 | 29,0 39,0 | 9,0 14,0 | 13,0 7,0 | 1.4 2,6 |
« | 13 Курская обл., Поныровский р-н, пашня | 0-27 40-50 | 38,8 24,4 | 19,8 26,5 | 31ё,8 40,7 | 4,6 4,2 | 5,0 4,2 | 1,3 2,5 |
Чернозем выщелоченный тяжелосуглинистый | А-3 Орловская обл., Ливенский р-н, залежь | 0-10 30-40 | -- -- | 35,6 34,9 | 48,8 38.4 | 9,0 18,2 | 6,6 8,5 | 14,2 10,8 |
То же | 9 Орловская обл.,Ливенский р-н, залежь | 0-27 40-49 | 20,8 9,2 | 13,2 21,7 | 31,1 56,1 | 11,9 8,9 | 23,0 4,1 | 1,3 6,5 |
» | 152* Липецкая обл., Измалковский р-н, пашня | 0—10 40—50 | 17,7 28,9 | 15,7 22,5 | 34,8 28,5 | 21,2 17,4 | 10,6 2,7 | 2,5 2,2 |
Чернозем типичный тяжелосуг-лннистый | 16 Курская обл., Стрелецкая степь, целина | 0—20 40—50 | 7,4 2,8 | 20,8 7,7 | 58,3 48,2 | 9,4 31,4 | 4,1 9,9 | 7,7 6,9 |
То же | 7 Курская обл., 'Тимский р-н, пашня | 0—27 40—50 | 19,0 5,3 | 22,3 23,4 | 34,9 56,4 | 16,1 10,4 | 7,7 4,5 | 2,7 9,2 |
Продолжение таблицы 2.1.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Чернозем типичный глинистый | 160* Воронежская обл., Эртиль-ский р-н, пашня | 0—10 40—50 | 16,3 13,1 | 10,6 20,1 | 42,4 41,9 | 22,4 18,3 | 8,3 6,6 | 3,1 4,1 |
Чернозем обыкновенный глинистый | 17 Воронежская обл., Каменная степь, залежь | 0—10 40—50 | 7,0 6,8 | 11,6 21,9 | 45,6 58,2 | 22,5 8,3 | 13,3 4,8 | 3,9 7,6 |
То же | А-8 Воронежская обл., Каменная степь, пашня | 0—15 45—55 | 15,0 23,7 | 11,0 14,9 | 27,7 43,6 | 29,9 9,9 | 16,4 7,9 | 2,2 2,2 |
> | 14 Белгородская обл., Вейделев-ский р-н, пашня | 0—26 40—50 | 12,5 5,6 | 8,9 28,4 | 34,5 55,7 | 27,3 6,8 | 16,8 3,5 | 2,4 10,0 |
Чернозем южный глинистый | А-4 Воронежская обл., Богучар-ский р-н, залежь | 0—10 30—40 | 1,6 2,4 | 24,8 24,6 | 48,8 46,7 | 17,5 21,7 | 7,3 4,6 | 10,2 13,3 |
То же | 4 Воронежская обл., Богучар-ский р-н, пашня | 0—10 30—40 | 43,2 10,4 | 16,9 31,1 | 24,3 54,2 | 12,3 3,2 | 3,3 1,1 | 1,2 7,7 |
Чернозем южный тяжелосуглинис-тый | 43 Воронежская обл., Петропавловский р-н, пашня | 0—10 40—50 | 26,1 26,1 | 14,5 15,2 | 21,2 28,9 | 23,7 18,3 | 14,5 11,5 | 1,5 1,7 |
» | 152* Липецкая обл., Измалковский р-н, пашня | 0—10 40—50 | 17,7 28,9 | 15,7 22,5 | 34,8 28,5 | 21,2 17,4 | 10,6 2,7 | 2,5 2,2 |
Чернозем типичный тяжелосуг-лннистый | 16 Курская обл., Стрелецкая степь, целина | 0—20 40—50 | 7,4 2,8 | 20,8 7,7 | 58,3 48,2 | 9,4 31,4 | 4,1 9,9 | 7,7 6,9 |
Продолжение таблицы 2.1.
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
То же | 7 Курская обл., Тимский р-н, пашня | 0—27 40—50 | 19,0 5,3 | 22,3 23,4 | 34,9 56,4 | 16,1 10,4 | 7,7 4,5 | 2,7 9,2 |
Чернозем типичный глинистый | 160* Воронежская обл., Эртиль-ский р-н, пашня | 0—10 40—50 | 16,3 13,1 | 10,6 20,1 | 42,4 41,9 | 22,4 18,3 | 8,3 6,6 | 3,1 4,1 |
Чернозем обыкновенный глинистый | 17 Воронежская обл., Каменная степь, залежь | 0—10 40—50 | 7,0 6,8 | 11,6 21,9 | 45,6 58,2 | 22,5 8,3 | 13,3 4,8 | 3,9 7,6 |
То же | А-8 Воронежская обл., Каменная степь, пашня | 0—15 45—55 | 15,0 23,7 | 11,0 14,9 | 27,7 43,6 | 29,9 9,9 | 16,4 7,9 | 2,2 2,2 |
> | 14 Белгородская обл., Вейделев-ский р-н, пашня | 0—26 40—50 | 12,5 5,6 | 8,9 28,4 | 34,5 55,7 | 27,3 6,8 | 16,8 3,5 | 2,4 10,0 |
Чернозем южный глинистый | А-4 Воронежская обл., Богучар-ский р-н, залежь | 0—10 30—40 | 1,6 2,4 | 24,8 24,6 | 48,8 46,7 | 17,5 21,7 | 7,3 4,6 | 10,2 13,3 |
То же | 4 Воронежская обл., Богучар-ский р-н, пашня | 0—10 30—40 | 43,2 10,4 | 16,9 31,1 | 24,3 54,2 | 12,3 3,2 | 3,3 1,1 | 1,2 7,7 |
Чернозем южный тяжелосуглинистый | 43 Воронежская обл., Петропавловский р-н, пашня | 0—10 40—50 | 26,1 26,1 | 14,5 15,2 | 21,2 28,9 | 23,7 18,3 | 14,5 11,5 | 1,5 1,7 |
Ухудшение структуры черноземных почв при сельскохозяйственном использовании более заметно по данным агрегатного анализа (мокрое просеивание). В пахотных горизонтах всех подтипов черноземов резко уменьшается количество водопрочных агрегатов, и особенно комочков крупнее 1 мм. Содержание же микроагрегатов заметно возрастает.
Таблица 2.2
Водопрочность агрегатов в черноземах ЦЧО /2/
Почва | Номер разреза, угодье | Глубина взятия образца, см | Содержание фракций, % Размер,мм | Критерий водопрочности агрегатов, % | ||
5-1 | 1-0,25 | менее 0,25 | ||||
Чернозем оподзоленный сред-несуглинистый | А-1, залежь | 0—20 30—40 | 12,5 15,5 | 36,0 38,0 | 51,5 46,5 | 54,1 57,7 |
То же | А-2, пашня | 0—20 30—40 | 10,4 13,1 | 19,8 16,6 | 69,8 70,3 | 34,7 31,9 |
» | 13, пашня | 0—27 40—50 | 16,6 24,0 | 45,4 36,2 | 38,0 39,8 | 65,3 62,8 |
Чернозем выщелоченный тяже-лосуглинистый | А-З, залежь | 0—10 30—40 | 19,4 22,1 | 40,1 39,5 | 40,5 38,4 | 63,7 67,3 |
То же | 9, пашня | 0—27 40—49 | 6,8 20,4 | 44,0 41,2 | 49,2 38,4 | 66,0 64,2 |
» | 152*, пашня | 0—10 40—50 | 8,4 27,6 | 30,9 43,5 | 60,7 28,9 | 44,0 73,1 |
Чернозем типичный тяжелосугли-нистый | 16, целина | 0—20 40—50 | 69,5 43,8 | 16,0 24,7 | 14,5 31,5 | 89,2 76,0 |
То же | 7, пашня | 0—27 40—50 | 9,5 26,6 | 45,8 40,0 | 44,7 33,4 | 59,9 69,7 |
Чернозем типичный глинистый | 160*, пашня | 0—10 40—50 | 9,0 33,7 | 36,4 42,0 | 54,6 24,3 | 49,5 81,0 |
Чернозем обыкновенный глинистый | 17, залежь | 0—10 40—50 | 34,2 49,7 | 34,4 27,6 | 31,4 22,7 | 79,1 81,2 |
То же | А-8, пашня | 0—15 45—55 | 2,3 18,7 | 29,3 41,3 | 68,4 40,0 | 37,8 65,1 |
Чернозем обыкновенный глинистый | 14, пашня | 0—26 40—50 | 7,2 56,0 | 49,3 27,7 | 43,5 16,3 | 67,9 86,7 |
Чернозем южный глинистый | А-4, залежь | 0—10 30—40 | 51,5 36,5 | 24,8 30,5 | 23,7 33,0 | 82,3 70,2 |
То же | 4, пашня | 0—10 30—40 | 28,4 56,7 | 33,9 24,0 | 37,7 19,3 | 62,8 81,6 |
Чернозем южный тяжелосу-глинистый | 43, пашня | 0—10 40—50 | 0,6 15,6 | 23,2 33,0 | 76,2 51,4 | 27,8 54,9 |
По этой причине критерий водопрочности агрегатов относительно невысок и колеблется от 27,8 до 67,9% /2/. Структурно-агрегатный состав подпахотных горизонтов черноземных почв по показателям близок к составу целинных и залежных черноземов ( таблицы 2.2., 2.3.).
Таблица 2.3
Статистические показатели водопрочных агрегатов >0,25 мм в черноземах
ЦЧО /2/
№ горизонта | Индекс горизонта | n | м | s | m | v | V0,95 | Р 0,95 | М min | M max |
Черноземы оподзоленные | ||||||||||
1 | Апах | 6 | 47,4 | 13,73 | 5,61 | 28,9 | 74,4 | 30,4 | 33,0 | 61,8 |
2 | Ап/п | 6 | 53,6 | 13,65 | 5,57 | 25,5 | 65,5 | 26,7 | 39,2 | 67,9 |
Черноземы выщелоченные | ||||||||||
3 | Апах | 11 | 41,2 | 9,00 | 2,71 | 21,8 | 48,7 | 14,7 | 35,2 | 47,3 |
4 | Ап/п | 11 | 61,9 | 9,03 | 2,72 | 14,6 | 32,6 | 9,8 | 55,8 | 67,9 |
Черноземы типичные | ||||||||||
5 | Апах | 19 | 50,1 | 6,05 | 1,39 | 12,1 | 25,4 | 5,8 | 47,1 | 53,0 |
6 | Ап/п | 19 | 67,2 | 7,55 | 1,73 | 11,3 | 23,6 | 5,4 | 63,5 | 70,8 |
Черноземы обыкновенные | ||||||||||
7 | Апах | 19 | 37,9 | 9,45 | 2,17 | 24,9 | 52,3 | 12,0 | 33,4 | 42,5 |
8 | Ап/п | 19 | 58,8 | 10,24 | 2,35 | 17,4 | 36,6 | 8,4 | 53,9 | 63,8 |
Черноземы южные | ||||||||||
9 | Апах | 7 | 38,5 | 13,25 | 5,01 | 34,4 | 84,3 | 31,9 | 26,3 | 50,8 |
Ап/п | 7 | 61,1 | 19,33 | 7,30 | 31,6 | 77,5 | 29,3 | 43,2 | 79,0 |
Примечание.n-число определений; М.-среднее арифметическое; s-среднее квадратичное отклонение; m-ошибка среднего арифметического; V-коэффициент вариации; V0,95-оказатель относительного вероятного разнообразия для вероятности Р=0,95; Ро,95-показатель относительной вероятной погрешности; М.min и М тах-возможные минимальные и максимальные значения генерального среднего арифметического при Р=0,95.
Таблица 2.4
Значение критериев t-Стьюдента, рассчитанных ( числитель ) и
табличных для вероятности Р=0,95 ( знаменатель ) при оценке
значимости различий средних арифметических величин
водопрочных агрегатов в черноземах /2/
№ горизонта | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
1 | -- | -- 0,78 2,23 | -- 1,13 2,13 | -- | -- 0,47 2,45 | -- | -- 1,93 2,07 | -- | -- 1,19 2,20 | -- |
2 | 0,78 2,23 | -- | -- | 1,52 2,13 | -- | 2,33 2,45 | -- | 1,00 2,07 | -- | 0,79 2,20 |
3 | 1,13 2,13 | -- | -- | 5,38 2,09 | 3,24 2,05 | -- | 0,94 2,05 | -- | 0,52 2,12 | -- |
4 | -- | 1,52 2,13 | 5,38 2,09 | -- | -- | 1,73 2,05 | -- | 0,83 2,05 | -- | 0,10 2,31 |
5 | 0,47 2,45 | -- | 3,24 2,05 | -- | -- | 7,71 2,04 | 4,73 2,04 | -- | 2,23 2,36 | -- |
6 | -- | 2,33 2,45 | -- | 1,73 2,05 | 7,71 2,04 | -- | -- | 2,88 2,03 | -- | 0,81 2,36 |
7 | 1,93 2,07 | -- | 0,94 2,05 | -- | 4,73 2,04 | -- | -- | 6,54 2,04 | 0,13 2,06 | -- |
8 | -- | 1,00 2,07 | -- | 0,83 2,05 | -- | 2,88 2,03 | 6,54 2,04 | -- | -- | 0,30 2,36 |
9 | 1,19 2,20 | -- | 0,52 2,12 | -- | 2,23 2,36 | -- | 0,13 2,06 | -- | -- | 2,55 2,18 |
10 | -- | 0,79 2,20 | -- | 0,10 2,31 | -- | 0,81 2,36 | -- | 0,30 2,36 | 2,55 2,18 | -- |
Примечание. Условные обозначения даны в таблице 2.3.
Статистическая обработка агрономически ценных водопрочных агрегатов (5-0,25 мм) в исследуемых почвах показала ( таблица 2.3. ), что максимальной величиной отличаются пахотные горизонты типичных черноземов. Основные статистические показатели, характеризующие варьирование водопрочных агрегатов в пахотных горизонтах черноземов ЦЧО, существенно различаются. Так, например, показатели относительного вероятного разнообразия и относительной вероятной погрешности изменяются соответственно в пределах 25,4—84,3% и 5,8—31,9%. Их величины — наименьшие в типичных черноземах, наибольшие — в оподзоленных и южных черноземах. Такая же закономерность отмечается в изменении минимальных и максимальных величин водопрочных агрегатов: наиболее узкие пределы в типичных черноземах, наиболее же широкие — в оподзоленных и южных черноземах /2/.
На заключительной стадии наших исследований была проведена оценка значимости различий средних арифметических величин водопрочных агрегатов в изучаемых черноземах для вероятности Р=0,95 (таблица 2.4.). Оказалось, что, во-первых, во всех подтипах черноземов, кроме оподзоленных, пахотные и подпахотные горизонты по содержанию водопрочных агрегатов значимо отличны друг от друга; во-вторых, пахотные горизонты типичных черноземов по этому показателю значимо отличны от выщелоченных и обыкновенных черноземов, между другими подтипами черноземов наблюдаемые различия незначимы; в-третьих, подпахотные горизонты исследуемых черноземов по количеству водопрочных агрегатов не различаются, значимые различия отмечаются лишь между типичными и обыкновенными черноземами.
Таким образом, агрономически ценная структура, свойственная черноземам ЦЧО в естественном состоянии, претерпевает существенные изменения в сторону ухудшения при сельскохозяйственном использовании: увеличивается глыбистость пахотных горизонтов и заметно уменьшается степень водопрочности агрегатов. Вследствие этого повышение продуктивности исследуемых почв в первую очередь связано с внедрением комплекса мероприятий, направленных на создание и сохранение в них агрономически ценной структуры.
... и изменяется от 5,1—7,1% в верхней части гумусовых горизонтов до 11,9—16,1% в почвообразующей породе /2/. В табл. 2.1 и 2.2. представлен структурный и агрегатный состав основных подтипов черноземов, определенный по методу Саввинова. Исследуемые почвы в естественном состоянии, т. е. до сельскохозяйственного освоения, характеризуются хорошей структурой. Данные структурного анализа свидетельствуют о ...
... , почвообразующих пород и грунтовых вод. Высокое содержание протеина в растительных остатках и нейтральная реакция среды благоприятствуют жизнедеятельности микробных форм микроорганизмов. 4. Генезис и строение чернозёмов Все существующие гипотезы о происхождении русского чернозема можно разбить на следующие три группы: одни ученые допускают водное происхождение рассматриваемой нами почвы, ...
0 комментариев