1. Классификация моделей объектов проектирования


ОБЪЕКТ инженерного проектирования - материальный объект искусственной природы, который должен быть создан для разрешения определенной проблемы, возникающей или выделенной в одном из фрагментов действительности.

В машиностроении в качестве объекта инженерного проектирования выступают технологические операции определенных классов.

Совокупность СВОЙСТВ объекта проектирования делится на внешние Y и внутренние Х свойства.

ВНЕШНИЕ свойства объекта проектирования разделяются на два подмножества:

- существенные (функциональные или свойства назначения) Yн, которые подлежат непосредственной реализации при использовании объекта по прямому назначению,

- утилитарные (нефункциональные) - Yу, присущие любому реальному объекту (объем, масса, стоимость и др.).

Справедливо соотношение: Y = Yн U Yу.

ВНУТРЕННИЕ свойства проектирования характеризуют физический, химический и др. процессы, а также техническую форму его реализации как принцип действия данного объекта проектирования.

МОДЕЛЬ ОБЪЕКТА M(О) - приближенное описание какого-либо класса явлений, выраженное с помощью математической символики.

Модели объектов проектирования классифицируют по ряду признаков:

- способу построения,

- степени полноты отображения рассматриваемых сторон объекта,

- степени общности в отношении к объекту,

- пригодности для целей прогнозирования,

- назначению.

Кратко рассмотрим каждую из групп моделей.


А. По способу построения различают модели семиотические (знаковые) и материальные (предметные ).

Семиотические модели предназначены для отображения с помощью знаков объектов различной природы, свойств этих объектов, а также различных отношений между объектами свойствами и значениями свойств.

Материальные (предметные) модели включают натурные (экспериментальные, лабораторные, опытные образцы объектов); геометрически подобные (пространственные макеты); физически подобные (модели, обладающие механическим, кинематическим, динамическим и другими видами физического подобия с объектом); предметно-математические (созданными с помощью ЭВМ).


Б. По степени полноты отображения (представления) объекта модели могут быть полными - M(O); неполными (различной степени неполноты по содержанию или объему) - M'(O), M"(O),..., Mn (O).


B. По степени общности в отношении к оригиналу выделяют модели описания Mo(O) (отображают характерные стороны объектов); модели-интерпретаторы Mi(O) (представляют отдельные объекты, входящие в состав некоторого класса и учитывают особенности их частной реализации); модели - аналоги Ma(O) (различные по форме представления, но равные между собой степени общности в отношении оригинала).


Г. По характеру воспроизводимых сторон объекта проектирования выделяют субстанциональные модели SbM(O) (характеризуют пространство возможных состояний объекта, примеры: справочники, описания типовых проектных решений, технологических операций); функциональные модели FnM(O) (в отличие от моделей SbM(O) характеризуют объект только в аспекте определенных его отношений со средой или другими объектами. Отображают поведение объекта, его приспособленность к определенным воздействиям); структурные модели StrM(O) (характеризуют внутреннюю организацию объектов); смешанные модели.


Д. По пригодности для целей прогнозирования модели относятся к пригодным и непригодным.


Е. По назначению модели могут быть целевыми и продуктивными.

Целевые модели Mц(O) призваны в явной форме отображать цель создания, назначение объекта проектирования.

Продуктивные модели Mпр(O), под ними понимается совокупность технической документации на объект.


2. Модельное представление технологических операций


По способу построения различают модели семиотические (знаковые) и материальные (предметные).

Семиотические модели предназначены для отображения с помощью знаков объектов различной природы, свойств этих объектов, а также различных отношений между объектами, свойствами и значениями свойств. Они делятся на языковые (логико-лингвистические - символьные структуры, входящие в некоторую систему, логико-математические - упорядоченные знаковые цепочки); неязыковые (наглядно-образные, например, схемы, эскизы, чертежи).

Материальные модели включают:

- натурные (экспериментальные, лабораторные, опытные образцы объектов);

- геометрически подобные (пространственные макеты );

- физически подобные (модели, обладающие механическим, кинематическим, динамическим и другими видами физического подобия с объектом;

- предметно-математические, созданные на базе ЭВМ и воспроизводящими объекты в определенном масштабе времени и реализующими подобие объектов.

Рассмотрим логико-математические модели.

Логико-математические модели любых объектов M(O) обычно определяются как множества (М1,M2,...,Mk) с заданными наборами отношений (r1,r2,...,rm). При этом справедливо следующее выражение:

M (O) = .

(Под сигнатурой понимается набор идентификаторов (имен) отношений, входящих в состав модели, с указанием их арности.

Моделью Mk(О) в сигнатуре Om называют пару , где M = {Mik} - базовое множество модели, a - инъективное отображение, которое сопоставляет каждое название (уникальное имя, идентификатор) с отношением Rn из сигнатуры Om.

В моделях технологических операций M(TO) будем квалифицировать множества (M1,M2,...,Mk) как базовые, если значения их элементов могут быть непосредственно интерпретированы как значения внешних или внутренних свойств технологических операций, значения свойств среды операции или свойств предметов последней.

Координатами элементов отношений (r1,r2,...,rm), входящих в M(TO), могут быть как элементы базовых множеств, так и элементы независимо определяемых, вложенных отношений.

Для описания схем связей координат в отношениях в M(TO), могут быть использованы передаточные функции, дифференциальные, разностные, регрессионные уравнения, табличные или словесные описания.

На рис.1. показан упрощенный образ реальных технологических операций.

В среде технологических операций, характеризуемой вектором Z, учитывать окрестностные условия Z0 и внешние условия Zy. Тогда справедливо выражение вида Z = Z0 И Zy.

В окрестностных условиях среды технологических операций выделим:

- предметы (материалы, полуфабрикаты, заготовки), состояние которых характеризуется составом и значениями ряда свойств (в общем случае как внешних, так и внутренних) т.е. вектором Z'0;

результаты технологических операций, состояние которых характеризуется вектором Z''0.



трудоемкости, материалоемкости, энергоемкости, фондоемкости операции); Y''у - показатели степени экологической безопасности.

В качестве внутренних свойств технологической операции X будем рассматривать:

Рис.1.1. Наглядная модель технологической операции и ее среды.


Внешние условия среды, описываемые вектором Zy, отображают условия функционирования средств технологического оснащения (оборудования, оснастки), реализующего данную технологическую операцию, условия, в которых пребывают предметы и результаты технологических операций (температура, влажность, запыленность окружающей среды, квалификация рабочих), а также тип производства, в котором используется данная технологическая операция (массовое, серийное, единичное, опытное).

В качестве внешних свойств технологических операций, характеризуемых вектором Y, выступают:

а) свойства назначения или функциональные Yн, в числе которых Y'н - главное свойство - способность преобразовывать предметы технологической операции в ее результат, т.е. Y'н : Z'0 -> Z''0 ; Y''0 - параметры производительности технологической операции (оценивается показателями среднего значения и дисперсии процента выхода, цикла операции, ритма выпуска, такта выпуска, числа одновременно изготавливаемых единиц и др.).

б) утилитарные свойства Yу, в числе которых Y'у параметры ресурсоемкости технологической операции синтезирован.

Известно, что Str-FnM(O) отображает внутренние свойства Х объекта на внешние Y (состав элементов объекта, состав и схему его внутренних связей, а также свойства этих элементов и связей на внешние свойства объекта.

Модель Str-FnMo(O) характеризует пространство возможных состояний объектов определенного класса в границах своей применимости для всех допускаемых данной моделью значений X и Y.

Решение задачи проектирования в данном случае заключается в формировании Str-FnMi(O) проектируемого объекта. Это сводится к выбору значений ряда параметров, которые являются наилучшими в смысле выполнения условий задача проектирования передвижения в пространстве допустимых значений параметров X и Y в
Str-FnMo(O).

Решение задачи проектирования при использовании представлений (оценивается показателями - параметры, характеризующие естественный процесс (физический, химический, физико-химический) Xп и техническую форму или способ осуществления этого процесса Хф, выступающие в качестве принципа построения/действия данной технологической операции,

- режимы функционирования технологического оборудования X0, реализующие данную операцию.

При этом справедливо X = Xп И Xф И Xо.

В общем случае внутренние свойства технологических операций могут описываться в терминах, лишь косвенно характеризующих естественный процесс.

ФУНКЦИОНАЛЬНЫЕ модели ТO могут быть представлены описаниями базовых множеств, характеризующих важнейшие свойства предметов, результатов и самой технологической операции, а также описанием отношения отображения предмета ТО на ее результат в форме передаточной функции:
FnM (ТО) Н Y Д Z , y М Yп, z М Zо.

СТРУКТУРНЫЕ модели ТО представляются описаниями базовых множеств, характеризующих только выделяемые внутренние свойства операции X = Xп И Xф И Xо.

Для отображения взаимосвязи внутренних свойств ТО обычно используются термины и условные обозначения той предметной области, к которой относится естественный процесс, выступающий в качестве принципа действия или построения технологической операции.

ФУНКЦИОНАЛЬНО-СТРУКТУРНЫЕ модели ТО представляются описаниями базовых множеств. Они характеризуют важнейшие свойства результата, предметов, свойства назначения и выделяемые внутренние свойства самой ТО. Также используются табличные или словесные описания отношения соответствия 'результат - предметы ТО' паре 'естественный процесс - техническая форма реализации процесса ':

Fn - StrM (ТО) : Y х Z -> X, y М Yн, z М Zо, x М Xп .

Cтруктурно-функциональные модели ТО представляются с помощью описаний базовых множеств, характеризующих все выделяемые внешние и внутренние свойства ТО, свойства ее результата, предметов, среды реализации, а также описаниями отображений внутренних свойств ТО, свойств предметов и внешних условий среды на внешние свойства ТО ее результата.

Обычно отношения, входящие в состав модели Str - FnM(ТО), представлены вектор - функциями, отображающими зависимость свойств:

- результата ТО Z"о от внутренних свойств ТО X, свойств предметов операций Z'о и внешних условий среды ТО Zу ;

- самой ТО Y = Yн И Yу от внутренних свойств операции X = Xп U Xф U Xо и свойств среды Z = Zо И Zу ;

тогда справедливо выражение:

Z"о = f(X, Z'о, Zу) ;


Str - FnM(ТО) = { Y = f(X, Z) ; z М Z, y М Y, x М X.


Продуктивная модель ТО - операционная карта по ГОСТ ЕСТД.


Информация о работе «Системное автоматизированное проектирование»
Раздел: Информатика, программирование
Количество знаков с пробелами: 138248
Количество таблиц: 8
Количество изображений: 10

Похожие работы

Скачать
20657
1
7

... литературе как "рабочая станция" (PC). Рис. 3. Структура рабочей станции проектирования электронных систем. Рис. 4. Структура ПО САПР. 4. Иерархические уровни представления электронных устройств Основным методом проектирования с применением САПР является блочно-иерархический метод или метод декомпозиции сложного объекта на подсистемы (блоки, узлы, компоненты). В этом случае ...

Скачать
90127
1
0

... него среде, знакомой ему по версии "AutoCAD 14. Однако более 400 усовершенствований делают работу конструктора существенно удобней и проще. 2. Технология автоматизированного проектирования в системе AutoCAD   2.1 Основы AutoCAD Чертить в системе AutoCAD — значит, формировать на экране дисплея изображение из отдельных графических элементов (примитивов), которые вводятся при помощи ...

Скачать
47390
3
1

... актуальностью информации, идентифицировать ошибки и избежать перепроектирования (по оценкам компании Aberdeen, не менее 70 % затрат на производство и сопровождение продукции приходится на этап проектирования). PLM-система способна предоставить пользователю информацию в форме, соответствующей выполняемым функциям в жизненном цикле создаваемого продукта: трехмерные модели, схематические диаграммы, ...

Скачать
43314
0
4

... являются Лоцман:PLM компании Аскон, PDM STEP Suite, разработанная под НПО "Прикладная логистика", Party Plus компании Лоция-Софт и т.д. Итак, термин САПР (система автоматизации проектирования) подразумевает комплексный подход к разработке изделия и включает совокупность систем CAD/CAM/CAE. Развитие систем геометрического моделирования, анализа и расчета характеристик изделия сопровождается ...

0 комментариев


Наверх