3.3.4 Расчет полосы пропускания.
Проверим обеспечит ли выбранное сопротивлении обратной связи Rос, расчитанное в пункте 3.3.1, на нужной полосе частот требуемый коэффициент усиления, для этого воспользуемся следующими формулами[2]:
(3.3.25)
(3.3.26)
Найдем значение емкости коллектора при Uкэ=10В по формуле (3.3.12):
Найдем сопротивление базы по формуле (3.3.13):
Статический коэффициент передачи тока в схеме с ОБ найдем по формуле (3.3.14):
Найдем ток эмиттера по формуле (3.3.15):
А
Найдем сопротивление эмиттера по формуле (3.3.16):
Ом
Определим диффузионную емкость по формуле (3.3.18):
пФ
, (3.3.27)
, (3.3.28)
где Yн – искажения приходящиеся на каждый конденсатор;
дБ,
или
(3.3.29)
Гц
Выбранное сопротивление Rос обеспечивает заданный диапазон частот.
3.3.5 Расчёт цепей термостабилизации
Существует несколько вариантов схем термостабилизации. Их использование зависит от мощности каскада и от того, насколько жёсткие требования к термостабильности. В данной работе рассмотрены три схемы термостабилизации: пассивная коллекторная, активная коллекторная и эмиттерная.
3.3.4.1 Пассивная коллекторная термостабилизация
Данный вид термостабилизации (схема представлена на рисунке 3.8) используется на малых мощностях и менее эффективен, чем две другие, потому что напряжение отрицательной обратной связи, регулирующее ток через транзистор подаётся на базу через базовый делитель.
Рисунок 3.8
Расчёт, подробно описанный в [3], заключается в следующем: выбираем напряжение (в данном случае 7В) и ток делителя (в данном случае , где – ток базы), затем находим элементы схемы по формулам:
; (3.3.30)
, (3.3.31)
где – напряжение на переходе база-эмиттер равное 0.7 В;
. (3.3.32)
Получим следующие значения:
Ом;
Ом;
Ом.
3.3.4.2 Активная коллекторная термостабилизация
Активная коллекторная термостабилизация используется в мощных каскадах и является очень эффективной, её схема представлена на рисунке 3.9. Её описание и расчёт можно найти в [2].
Рисунок 3.9
В качестве VT1 возьмём КТ361А. Выбираем падение напряжения на резисторе из условия (пусть В), затем производим следующий расчёт:
; (3.3.33)
; (3.3.34)
; (3.3.35)
; (3.3.36)
, (3.3.37)
где – статический коэффициент передачи тока в схеме с ОБ транзистора КТ361А;
; (3.3.38)
; (3.3.39)
. (3.3.40)
Получаем следующие значения:
Ом;
мА;
В;
кОм;
А;
А;
кОм;
кОм.
Величина индуктивности дросселя выбирается таким образом, чтобы переменная составляющая тока не заземлялась через источник питания, а величина блокировочной ёмкости – таким образом, чтобы коллектор транзистора VT1 по переменному току был заземлён.
... Лит Масса Масштаб Изм Лист Nдокум. Подп. Дата УСИЛИТЕЛЬ МОДУЛЯТОРА Выпол Радишевск СИСТЕМЫ ЗАПИСИ Проверил Титов КОМПАКТ-ДИСКОВ Лист Листов ТУСУР РТФ Принципиальная Кафедра РЗИ ...
... и частотному диапазонам. Для удовлетворения всей ВОСПИ необходимо обеспечить их выполнение каждым элементам ВОСПИ: усилителем модулятором лазерным излучателем (ИЛПН) оптическим кабелем фотоприемным устройством Потери оптической мощности волоконно-оптических системах передачи происходят в основном на неоднородностях оптического волокна и соединениях. Кроме них существуют различные виды ...
... АРУ и дифференциальным выходом. Модель PROM-155 дополнительно имеет встроенный усилитель-ограничитель и PECL – выход отсутствия сигнала в линии. Модули предназначены для работы в цифровых волоконно-оптических линиях связи со скоростью передачи информации 2..155 Мбит/c. Технические характеристики оптических модулей приведены в табл. 1.3. Таблица 1.3 – Технические характеристики оптических ...
... . Важную роль при этом играют возможность насыщения поверхностного слоя элементами окружающей среды, рост плотности дислокаций в зоне облучения и другие эффекты. 2.1. Виды поверхностной лазерной обработки В зависимости от степени развития указанных явлений в материале различают несколько видов поверхностной лазерной обработки (табл. 1), возможность реализации которых определяется основном уровнем ...
0 комментариев