МЭИ (ТУ)

 

 

Кафедра парогенераторостроения

 

 

Типовой расчёт по курсу:

Генераторы тепловой энергии

Тепловой расчёт ВВЭР

 

 

 

 

 

 

 

 

 

 

 

Студент: Иванов А.А.

Группа: С-2-95

Преподаватель: Двойнишников В.А.

 

 

 

 

 

 

 

Москва 2000 год

Аннотация.

В данной работе решались следующие задачи:

расчёт реактора при m = 1 и qv = 100 и определение его экономичности и надёжности при учёте наложенных ограничений: 1.6 < n < 2.2,

2 < Wт <10 м/с, tоб < 350 оС, tc < 2300 оС.

нахождение области допустимых значений относительной высоты активной зоны m и удельного энерговыделения qv (m = 0.8 … 1.6,

qv = 50 … 150) при учёте наложенных ограничений: 1.6 < n < 2.2,

2 < Wт <10 м/с, tоб < 350 оС, tc < 2300 оС.

для выбранного варианта расчёт температуры сердечника, оболочки и теплоносителя по высоте активной зоны.

 

Содержание:

Введение Исходные данные Тепловой расчёт реактора при m = 1 и qv = 100 МВт/м3

3.1. Определение размеров активной зоны реактора и скорости теплоносителя

3.2. Определение коэффициента запаса по критической тепловой нагрузке

3.3. Расчёт максимальных температур оболочки ТВЭЛа и материала

топливного сердечника

3.4. Определение области допустимых значений m и qv

3.5. Расчёт распределения температуры теплоносителя, оболочки и топливного

сердечника по высоте активной зоны реактора

4. Выводы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Введение

Назначение и виды тепловых расчётов реакторов.

Тепловой расчет ядерного реактора является одной из необходимых составных частей процесса обоснования и разработки конструкции. Без него невозможны ни предварительные поисковые проработки, ни определение оптимальных проектных решений.

Тепловые расчеты обычно выполняются одновременно с гидравлическим и нейтронно-физическим расчетами реактора. В зависимости от задач, решаемых на том или ином этапе проработки конструкции, различают поисковые и поверочные расчеты

Поисковые тепловые расчеты проводятся в период определения основных конструктивных решений. При их выполнении, как правило, известны тепловая мощность реактора, распределение плотности энерговыделения, вид теплоносителя и его параметры все эти данные получают в результате нейтронно-физического расчета, а также тип и конструкция ТВЭЛов и кассет, определяемых техническим заданием на основе накопленного опыта проектирования, изготовления и эксплуатации. В результате определяются размеры активной зоны и других элементов реактора, находятся, а при необходимости уточняются параметры теплоносителя, определяются характерные температуры, выбираются конструкционные материалы и топливные композиции.

По мере разработки конструкции тепловые расчеты выполняются снова, но более детально, с учетом выбранных конструктивных решений, как для номинального режима, так и для работы на частичных нагрузках. Также обсчитываются тепловые режимы работы оборудования при переходных процессах при пуске, останове, изменении нагрузки, характерных как для штатных ситуаций, так и в аварийных случаях. Во всех этих случаях тепловой расчет носит характер поверочного, и его основной задачей является определение термодинамических характеристик теплоносителя и тепловых параметров характеризующих условия функционирования элементов ядерного реактора. Обеспечение надежной работы реактора в целом и его отдельных элементов, достижение высокой экономичности реакторной установки требует высокой точности определения теплотехнических параметров, что ведет к существенному усложнению всех видов расчетов, в том числе и теплового. Необходимость же их автоматизации приводит к созданию сложных программных комплексов, объединяющих тепловые, Гидравлические, нейтронно-физические и прочностные расчеты.

Настоящий метод ориентирован на использование несколько упрощенного теплового расчета, базирующегося на одномерном представлении протекания процессов тепло - и массообмена в одной ячейке активной зоны реактора.

2. Исходные данные.

Для выполнения теплового расчета водо-водяного энергетического реактора (ВВЭР) в соответствии с упрощенной методикой требуются исходные данные, условно подразделяемые на режимные и конструктивные,

Данные режимного типа:

Тепловая мощность ВВЭР N = 1664.87 МВт

Конструктивные данные:

Характеристики кассеты:

Число ТВЭЛов в кассете nТВЭЛ = 331

Шаг решётки а¢ ¢ = 12.75·10-3 м

Размер кассеты “под ключ” а¢ = 0.238 м

Толщина оболочки кассеты δ = 1.5·10-3 м

Характеристика ТВЭЛа:

Радиус топливного сердечника r1 = 3.8·10-3 м

Внутренний радиус оболочки r2 = 3.9·10-3 м

Внешний радиус оболочки rq = 4.55·10-3 м

Размер ячейки а = 0.242 м Материал оболочки ТВЭЛов и кассет: 99% циркония и 1% ниобия Топливная композиция: двуокись урана

 

3.Тепловой расчёт реактора при qv= 100 МВт/м3 и m= 1

Определение размеров активной зоны реактора и скорости теплоносителя. Температура теплоносителя на выходе из реактора

tвых = 314 ° C

Принимаем из расчёта парогенератора

Температура теплоносителя на входе в реактор

tвх = 283 ° C

Принимаем из расчёта парогенератора

Перепад температур теплоносителя между входом и выходом

Δtт = tвых - tвх = 314 – 283 = 31 ° С

Температура воды на линии насыщения

Запас до температуры кипения δt = 30 ° C

ts = tвых + δt = 314 + 30 = 344 ° C

Давление в реакторе

P = 15.2 МПа

Расход воды (теплоносителя) на один реактор

средняя температура воды в реакторе tср = Тепловой расчет реактора = 298.5 ° C

средняя теплоёмкость воды Cp = 5.433 кДж/кг

Gт = Тепловой расчет реактора =9885.05 кг/с

Принимаем из расчёта парогенератора.

Объём активной зоны реактора.

Средняя плотность тепловыделения АЗ реактора qv = 100 МВт/м3

VАЗ = Тепловой расчет реактора= 16.648 м3

Диаметр активной зоны реактора

Параметр m* = Тепловой расчет реактора= 1

DАЗ = Тепловой расчет реактора = 2.767 м

Число кассет в активной зоне

Площадь поперечного сечения ячейки: Sяч = 0.866·a2 = 5.072·10-2 м2

Тепловой расчет реактора = 178.2 шт.

т.к.Тепловой расчет реакторадробное, то округляем его до ближайшего большего целого числа

Nкас = 179 шт. с последующим уточнением величин:

DАЗ=Тепловой расчет реактора= 3.4 м

m = Тепловой расчет реактора= 0.993

Высота активной зоны реактора

HАЗ = m·DАЗ = 0.993·3.4 = 3.376 м

Тепловыделение в ТВЭЛах

Доля теплоты выделяемая в ТВЭЛах κ1 = 0.95

Qт = κ1·N = 0.95·3064 = 2910.8 МВт

Суммарная поверхность ТВЭЛ

F = 2·π·rq·HАЗ·nТВЭЛ·Nкас = 2·π·4.55·10-3·3.376·331·179 = 5719 м2

Расход теплоносителя через одну кассету

Gтк = Тепловой расчет реактора= 90.22 кг/с


Информация о работе «Тепловой расчет реактора»
Раздел: Наука и техника
Количество знаков с пробелами: 14676
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
27613
35
13

... рамках курсового проекта по курсу " Теплогидравлические процессы в ядерных энергетических установках" рассматриваются решения наиболее распространенных задач. 1. ТЕПЛОГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТЕХНОЛОГИЧЕСКОГО КАНАЛА 1.1 Расчет основных геометрических характеристик канала и активной зоны К числу основных геометрических характеристик активной зоны реактора типа РБМК относятся объем и диаметр ...

Скачать
25763
17
0

... по таблице 4 [1]. 0308.КП.ЭУП.ПО21.11.ПЗ.   7     1.2. Расчет технико-экономических показателей АЭС-6000 МВт. Наименование Обозначение Количество Единица измерения ...

Скачать
25484
0
1

... на параметры и профиль ППТУ осуществляется с использованием ЕС ЭВМ и системы математических моделей, имитирующих функционирование энерготехнологических блоков. Проведено несколько серий расчетов на ЕС ЭВМ, которые отличаются по дискретным признакам типов и схем энерготехнологических блоков (с плазмопаровой и плазмокислородной газификацией, с плазмотермической газификацией, с внутрицикловой ...

Скачать
31037
2
9

... с малой величиной поглощения нейтронов плутонием цепная реакция в сплаве плутония и урана-238 идти будет, причем в ней будет образовываться большое количество нейтронов. ·        Таким образом, в ядерном реакторе должен использоваться либо обогащенный уран с замедлителем, поглощающем нейтроны, либо необогащенный уран с замедлителем, мало поглощающем нейтроны, либо сплав плутония с ураном без ...

0 комментариев


Наверх