1.1.3 Пондеромоторный метод
В пондеромоторных измерителях энергии и мощности лазерного используется эффект П.Н. Лебедева. Лазерное излучение падает на тонкую приемную пластинку и давит на нее. Давление (сила) измеряется чувствительным преобразователем.
Классический прибор для измерения малых сил - крутильные весы. При попадании оптического излучения на приемное крыло подвижная система отклоняется от положения равновесия на некоторый угол, по величине которого можно судить о значении мощности или энергии.
Значение угла __ при воздействии на нее непрерывного излучения мощностью P:
где p - коэффициент отражения пластины
т - коэффициент пропускания входного окна камера
- угол падения излучения на пластинку
C - скорость света
K - жесткость подвеса
где W - энергия излучения
J - момент инерции вращающейся системы
Для отсчета угла поворота крутильных весов часто используют емкостной преобразователь. В этом случае пластина противовеса является одной из пластин конденсатора, включаемого в резонансный контур генератора. При повороте подвижной системы емкость конденсатора изменяется, меняется частота генерации, что измеряется частотным детектором. Такая конструкция громоздка, хотя и очень чувствительна.
Другой способ реализации высокочувствительной системы отсчета является схема с 2-мя ф/р. При отклонении системы, освещенность ф/р меняется, мост разбалансируется и в его измерительной диагонали появляется ток, пропорционален углу отклонения, который регистрирует mA.
Помимо крутильных весов для измерения широко используется механотроны, которые представляют собой электровакуумный прибор с механически управляемой электродами. При воздействии внешнего механического сигнала в механотроне происходит перемещение подвижных электронов, что вызывает соответствующее изменение анодного тока.
Достоинства и недостатки методов:
Достоинства теплового метода:
1) широкий спектр и динамический диапазон измерений
2) простота и надежность измерительных средств
3) высокая точность
Недостатки:
1) малое быстродействие и чувствительность
Достоинства ф/э метода:
1) максимальная чувствительность и быстродействие
Недостатки:
1) сравнительно узкий спектральный диапазон
2) большая погрешность измерения (5..30%) по сравнению с тепловыми приборами.
Достоинства пондеромоторного метода:
1) высокий верхний предел измеряемой энергии и мощности
2) высокая точность измерений
Недостатки:
1) жесткие требования к условиям эксплуатации (вибрации)
1.2 Измерение основных параметров импульса лазерного излучения
Ряд активных сред работают в импульсных режимах генерации:
1) это лазеры на самоограниченных переходах - азотный лазер, генерирующий в УФ диапазоне, и лазер на парах Cu, дающий мощные импульсы зеленого цвета
2) рубиновые лазеры
В результате возникает задача: измерить основные параметры генерации импульсных лазеров. Разделяют измерение временных и энергетических параметров.
Измерение энергии импульса проводится обычно с помощью ф/э приемника с высоким временным разрешением.
1.2.1 Анализ параметров импульса с помощью осциллографа
Для измерения формы импульса и его временных параметров (длительности т, tнар и tспада) используют быстродействующие фотоприемники с высокой линейностью световой характеристики. Это коаксиальные ф/э серии ФЭК : их временное разрешение 1e-9..1e-10 с.
Для измерения формы импульса используют обычные универсальные осциллографы с половой пропускания до 1e7 Гц, и специальные сверхкороткие осциллографы.
1.2.2 Изучение формы сверхкоротких лазерных импульсов
Используют косвенные методы, основанные на применении временной развертки, используемой в оптико-электронных осциллографах. Использование оптико-механической развертки не позволяет сколь либо угодно улучшить временное разрешение, но позволяет осуществить набор двумерных или одномерных изображений.
ЭОПы с разверткой обычно используют для исследования только временных зависимостей интенсивности сфокусированного пучка излучения (т.к. частота смены кадров гораздо ниже, что затрудняет исследование динамики процесса генерации).
Однако сложность, высокая стоимость, громоздкость и необходимость высококвалифицированного обслуживания затрудняет использование камер с оптико-механической и электронной. Поэтому использую часто оптический метод измерения длительности импульса.
"Световая" развертка была предложена в 1967 г. Джордмейном при изучении длительности "nс" импульсов при распространении двух одинаковых световых пучков навстречу друг другу в растворе нелинейно люминесцирующего красителя.
В первом эксперименте "стоячая" волна образовывалась путем отражения основного пучка "nс" импульсов в зеркале кюветы с красителем. Возле зеркала (и далее с шагом l=TC/n) плотность энергии прямого и отраженного пучка будет max из-за совпадения i-го импульса. Левее зеркала на l будут совпадать (i-1)-й импульс в прямой волне и (i+1)-й импульс - в отраженной. При удалении от зеркала на 2l двуфотонная люминесценция красителя будет ярче из-за наложения (i-2) и (i+2)-го импульсов луча. Яркость фонового свечения 2-х фотонной люминесценции B~I^2 интенсивности, а max яркости возле зеркала : B~(2*I)^2=4*Ш^2, т.е. заметно выше.
1.3 Измерение пространственного распределения энергии в лазерном пучке
Наиболее полная пространственно-энергетическая характеристика лазерного излучения является диаграмма направленности, т.е. угловое распределение энергии или мощности в лазерном
пучке. Практичекий интерес представляет распределение поля излучения в дальней зоне, когда форма распределения перестает зависеть от расстояния, превышающее d^2/&, где d - диаметр излучающей апертуры лазера.
На практике используют два понятия расходимости, в первом случае имеют ввиду плоский или телесный угол Q или Qs определяющий ширину диаграмму направленности в дальней зоне по заданному уровню углового распределения энергии или мощности, отнесенного к его max значению. Чаще всего значение уровня принимается равным 0.5 и 1/e^2. Это определение характеризует излучение одномодового лазера, т.е. распределение, близкое к гауссовому. В случае многомодового режима диаграмма имеет многочисленные боковые лепестки, содержащие значительную часть энергии. Поэтому величина расходимости по заданному уровню энергии или мощности, т. е. по существу центрального max распределение не очень показательна. В таких случаях более удобной характеристикой является энергетическая расходимость лазерного излучения. (Qn,p или Qw,s), т.е. плоский или телесный угол, внутри которого распространяется заданная доля энергии излучения.
Лазерное излучение характеризуется значением диаметра пучка лазерного излучения, внутри которого происходит заданная доля энергии или мощности.
Для практического определения расходимости используют три основных метода:
1) Метод 2-х сечений
2) Метод регистрации диаграммы направленности
3) Метод фокального пятна
Наиболее распространенный метод измерения расходимости пучка - метод фокального пятна.
1.4 Измерение поляризации лазерного пучка.
В лазерах излучение должно обладать 100% поляризацией (линейной или круговой). Вид поляризации определяется особенностями используемой в лазере активной среды - поляризацией ее спонтанного излучения, и величиной коэффициента усиления для элементарных поляризаций.
Все "элементарные" состояния поляризации могут быть получены из 2-х линейно поляризованных во взаимно - плоскостях излучений с амплитудой Ax и Ay.
2. Измерение спектральных и корреляционных параметров и характеристик лазерного излучения.
Когерентность характеризуется двумя основными параметрами
- временной когерентностью
- степенью пространственной когерентности
2.1 Влияние параметров лазера на когерентность его излучения
Лазер - прибор, в котором частота генерации зависит от собственных (резонансных) частот резонатора. К вторичным эффектам, изменяющим частоту генерации лазера оказывают эффекты затягивания или отталкивания. Гораздо сильнее на частоту генерации лазера влияют параметры активной среды: центральная частота лазерного перехода, ширина спектральной линии.
Измерение лазерных характеристик может быть разделено на 3 группы:
1) Измерение спектра излучения многомодовых лазеров непрерывного действия и "nc" лазеров
2) Прецезионное измерение длины волны или чатоты генерации
3) Измерение ширины полосы генерации одночастотного лазера или разности частот генерации 2-х однотипных частотностабилизированных лазеров.
3. Измерение основных параметров главных компонентов лазера
Главные компоненты лазера: активная среда и оптический резонатор. Активная среда, преобразующая энергию накачки в когерентное излучение, определяет энергетические характеристики лазера и длину волны излучения, а от резонатора - частотные и пространственные.
Для измерения потерь или усиления лазерных компонентов используют компенсационный метод, для измерения ненасыщенного усиления - метод комбинированных потерь, прямой метод.
... , форменных элементов (эритроциты, лейкоциты, тромбоциты и др.) существенно повышают восприимчивость и чувствительность жидких сред организма к внешнему воздействию различных физических факторов, в том числе низкоэнергетического лазерного излучения. В биологических жидкостях имеются специфические фотоакцепторы, реагирующие на лазерное излучение определенной длины волны. Кроме того, энергетической ...
... потенциал ионизации. 4.3 Методика экспериментальных исследований Основной целью проведенных экспериментов было исследование влияния лазерного излучения на электропроводность диэлектрических жидкостей и изучение практической возможности реализации электроэрозионных явлений в диэлектрической среде. Эксперименты проводятся для исследования влияния следующих параметров: · ...
... определяли с помощью набора реактивов «HNP1-3» (HyCult biotechnology», Нидерланды) с использованием метода основанного на двухсайтовом твёрдофазном ИФА. Исследование влияния лазерного излучения на функции нейтрофилов и факторы мукозального иммунитета репродуктивного тракта in vivo За период с 2005 по 2008 год нами проведено открытое, краткосрочное, простое, "слепое" рандомизированное ...
... перемещения луча приведено на рис. 1.5. Наблюдаемые различия в структуре и твёрдости слоёв зоны в стали 35, обрабатываемой непрерывным излучением лазера на СО2, объясняют различными условиями их нагрева и охлаждения. 1.6. Упрочнение кулачка главного вала В течение последних трёх – пяти лет появились мощные газовые лазеры, обеспечивающие в режиме непрерывной генерации мощность порядка ...
0 комментариев