1 Гр = 1 Дж/кг = 100 рад.

Мощность поглощенной дозы измеряется в системе СИ в Гр/с, Гр/ч и т.д.

Стоит обратить внимание на то обстоятельство, что рад (или грэй) – единица чисто физической величины. По существу, это энергетическая единица, никак не учитывающая те биологические эффекты, которые производит проникающая радиация при взаимодействии с веществом. Однако то, что действительно интересует специалистов по дозиметрии и радиационной физике, – это изменения в организме, возникающие при облучении человека. Оказалось, что тяжесть всяческих нарушений сильно различается в зависимости от типа излучения.

Другими словами, знания поглощенной дозы совершенно недостаточно для оценки радиационной опасности. Более того, измерить поглощенную дозу непосредственно в живой ткани чрезвычайно трудно, и даже если бы удалось проделать такие измерения, их ценность оказалась бы невелика. Действительно, отклик живого организма па облучение определяется не столько поглощенной дозой, сколько микроскопическим – то есть на уровне отдельных молекул – распределением энергии по чувствительным структурам живых клеток. Поэтому возникла необходимость ввести такую измеримую величину, которая учитывала бы не только выделение энергии, но и биологические последствия облучения.

Из соображений простоты и удобства биологические эффекты, вызванные любыми ионизирующими агентами, принято сравнивать с воздействием па живой организм рентгеновского или гамма-излучения. Удобство здесь состоит в том, что для рентгеновского излучения заданные дозы и их мощности сравнительно просто получаются (например, с помощью калиброванных рентгеновских источников), хорошо воспроизводятся и надежно измеряются. Все эти процедуры становятся заметно сложнее для других типов излучений. Чтобы можно было сравнивать воздействие последних с биологическими эффектами от рентгеновского и гамма-излучения, вводится так называемая эквивалентная доза, которая определяется как произведение поглощенной дозы на некоторый коэффициент, зависящий от вида излучения.

Этот коэффициент, называемый «фактором качества» Q, приблизительно равен единице для гамма-лучей и протонов высокой энергии; для тепловых нейтронов Q ≈ 3, а для быстрых нейтронов значение Q достигает десяти. При облучении α-частицами и тяжелыми ионами Q ≈ 20, а это значит, что даже сравнительно малые поглощенные дозы могут вызвать серьезные биологические последствия. Эквивалентная доза измеряется в бэрах (бэр – биологический эквивалент рентгена). Иногда употребляется также наименование «рем» (от английской аббревиатуры rem – roentgen equivalent for man, эквивалент рентгена для человека). Коэффициент качества излучения Q устанавливается на основе радиобиологических экспериментов и приводится в специальных таблицах. Для рентгеновского излучения (Q = 1) один рад поглощенной дозы соответствует одному бэру.

Единицы измерения в радиационной физике

Рис. 1. Радиоактивный распад

При радиоактивном распаде число нестабильных ядер уменьшается с течением времени очень быстро – экспоненциально. Продолжительность жизни распадающегося вещества характеризуют временем, по истечении которого количество активных атомов в веществе в среднем уменьшается вдвое. Этот промежуток времени Т называется периодом полураспада. Если, например, в материале, испытывающем радиоактивное превращение, первоначально было N0 ядер, то через время Т их станет 1/2 N0, через 2Т – 1/4 N0, через 3Т – уже 1/8 N0, и так далее. Число радиоактивных ядер будет «выгорать» в геометрической прогрессии с показателем, равным двойке. Периоды полураспада для различных радиоактивных веществ изменяются от миллиардов лет до миллионных долей секунды и хорошо поддаются вычислению с помощью квантовой механики.

В принципе особой необходимости в специальной единице эквивалентной дозы нет, она может измеряться в тех же единицах, что и поглощенная доза, поскольку коэффициент Q – безразмерный. Тем не менее, учитывая важность проблемы биологического действия ионизирующих излучений, в радиационной физике и при расчете защиты от ядерных излучений стали использовать единицу эквивалентной дозы. В системе СИ эта единица установлена совсем недавно и называется зиверт (обозначается Зв, Sv). Эквивалентная доза в 4...5 зиверт (примерно 400...500 бэр), полученная за короткое время, вызывает тяжелое лучевое поражение и может привести к смертельному исходу. Предельно допустимая доза (ПДД) для персонала, работающего с радиоактивными веществами, установлена в 5 бэр/год (или примерно 100 мбэр/неделя).

При этом имеется в виду облучение всего тела, как говорят, тотальное облучение. Для населения установлен предел дозы за год в десять раз меньший – 500 мбэр/год.

Как же узнать, какую дозу радиации получает человек, находящийся вблизи радиоактивного источника? В том-то и состоит предательская особенность ядерных излучений, что с точки зрения человека, попадающего в опасную зону, они никак себя не проявляют. Человеческие органы чувств, сформировавшиеся как инструмент выживания, совершенно не приспособлены к восприятию проникающей радиации, и в этом ее существенное отличие, трагическая выделенность по сравнению с другими природными воздействиями. Ведь даже небольшие с точки зрения физики изменения светового потока, температуры воздуха или механического давления вызывают довольно бурную реакцию человеческого организма.

По отношению к этим изменениям в окружающей среде природа с самого начала была поставлена в жесткие условия – жизнь обрывалась, если природные воздействия выходили за допустимые пределы. Острота восприятия помогает человеку ориентироваться в обстановке и принимать необходимые меры предосторожности. Скажем, зрение, которое на протяжении многих поколений служило почти единственным способом обнаружить врага, должно было действовать и в сумерках, и даже при свете звезд, когда световая энергия поступает лишь редкими порциями. Собрать и использовать каждый фотон, чтобы лучше увидеть надвигающуюся опасность, было делом жизни или смерти.

Единицы измерения в радиационной физике

Рис. 2. Основные виды ядерных превращений, приводящие к испусканию радиоактивных излучений

При альфа-распаде из ядра вылетает сравнительно тяжелая альфа-частица, которая представляет собой ядро атома гелия. Энергия вылетающей альфа-частицы по атомным масштабам довольно высока – примерно 5...10 МэВ, то есть почти в миллион раз больше энергии электрона в атоме. Поэтому альфа-частицы, проходя через вещество, могут производить в нем обильные нарушения вследствие ионизации и возбуждения атомов. При бета-распаде нейтрон внутри ядра самопроизвольно превращается в протон, и при этом испускается электрон (или, наоборот, протон переходит в нейтрон с испусканием позитрона). Кроме электрона и позитрона, при бета-распаде возникают также нейтрино и антинейтрино, однако их воздействие на вещество ничтожно. Образовавшееся в результате радиоактивного распада ядро, как правило, сильно возбуждено, и оно освобождается от избыточной энергии, испуская жесткие гамма-кванты. Это гамма-излучение обладает большой проникающей способностью и может причинить немалый вред живому организму.

Если зрение или обоняние – вспомним нюх собаки! – по своей обнаружительной способности близки к физическим пределам (которые невозможно преодолеть никакими техническими ухищрениями), то при восприятии радиации человек находится почти на пределе «тупости». Поэтому без специальных приборов мы не можем судить ни об уровне радиации, ни даже об ее наличии или отсутствии, а следовательно, и о грозящей нам опасности. В таких приборах используются те же самые радиационные эффекты, которые причиняют нам вред, в частности, ионизация частиц среды. Ионизационный метод регистрации излучения стал исторически первым – он начал широко использоваться в 20-х годах. В связи с этим были предприняты попытки установить такие единицы измерения радиации, которые позволили бы связать ионизационный эффект с биологическим, а также с поглощением энергии излучения. В 1928 году в качестве такой единицы был принят рентген (обозначается Р, R).

Введение новой единицы вызвало много споров. Прежде всего возник вопрос: рентген – единица чего? Какой наблюдаемой физической величине она соответствует? Ответ на этот вопрос давался по-разному, однозначного толкования рентгена вначале не было. Какое-то время рентген рассматривали как количество излучения, характеризующее поглощенную из потока радиации энергию в единице массы воздуха. Такая интерпретация рентгена, вообще говоря, не соответствовала его определению как меры ионизационного эффекта. Ведь поглощенная энергия и число образовавшихся пар ионов – разные физические величины, поэтому использовать рентген для оценки поглощенной энергии оказалось неудобным.

Однако в соответствии с «энергетическим постулатом», специалистов по физике защиты от излучений и радиобиологов интересовала в первую очередь поглощенная в живой ткани энергия. Трудности, возникавшие при ее подсчете через единицу «рентген», требовали разных уточнений и оговорок. Применение рентгена для оценки поглощенной энергии было неудобно еще и потому, что эта единица была введена и соответственно метрологически поддерживалась только для рентгеновского и гамма-излучений (да и то, строго говоря, с определенным спектром). Чтобы сравнивать эффекты, производимые в веществе корпускулярным излучением, например, электронами или нейтронами, приходилось вводить поправочные коэффициенты для каждого типа среды – воздуха, мышечной ткани, кости и т.д. Такие коэффициенты назывались эквивалентами рентгена. Одним словом, прямое использование рентгена, понимаемого как единица поглощенной энергии, создавало в радиационной физике много неудобств.

Единицы измерения в радиационной физике

Рис. 3. Слой «половинного ослабления» для жесткого гамма-излучения

Так в физике защиты от излучений называют толщину того или иного материала, после прохождения которого интенсивность гамма-излучения уменьшается наполовину. Полного поглощения гамма-излучения (с энергией ниже 10 МэВ) в веществе не происходит, однако интенсивность потока гамма-квантов ослабляется по экспоненциальному закону, в точности такому же, как закон радиоактивного распада. При этом роль периода полураспада играет слой половинного ослабления. Для жесткого гамма-излучения с энергией квантов 1 МэВ толщина этого слоя составляет 5 см бетона, 3 см стали или 1 см свинца. Если необходимо уменьшить интенсивность опасного гамма-излучения в миллион раз, то потребуется свинцовый экран толщиной 20 см либо бетонная стенка метровой толщины (220 примерно равно 106). 10 см свинца ослабляют жесткое излучение в тысячу раз. Для сравнения: альфа-излучение с энергией 1 МэВ практически полностью поглощается алюминиевой фольгой толщиной 5 микрон, а для поглощения бета-радиации с такой же энергией достаточно 1,6 мм алюминия.

В современной дозиметрии рентген рассматривается не как единица, характеризующая поглощенную энергию и тем самым напрямую связанная с биологическим эффектом, а только как единица, определяющая ионизирующую способность рентгеновского и гамма-излучений в 1 см3 воздуха. Физическая величина, которой соответствует единица «рентген», называется экспозиционной дозой рентгеновского и гамма-излучений. Экспозиционная доза определяется по ионизации воздуха – как отношение суммарного заряда всех ионов одного знака, созданных в воздушном объеме ионизирующим агентом, к массе воздуха в этом объеме. В системе СИ единицей экспозиционной дозы служит Кл/кг (кулон, деленный на килограмм). Экспозиционная доза в 1 Кл/кг означает, что суммарный заряд всех ионов одного знака (например, положительных), которые возникли под действием излучения в 1 кг воздуха, равен одному кулону.

С точки зрения убежденных приверженцев системы СИ, рентген – устаревшая и как бы «незаконная», внесистемная единица. Один рентген – это такая экспозиционная доза рентгеновского или гамма-излучения, при которой в 1 см3 атмосферного воздуха при температуре 0°C и давлении 760 мм ртутного столба возникают ионы, несущие положительный или отрицательный заряд в одну электростатическую единицу (1 CGSE). Поскольку заряд электрона равен 4,8 10–10 электростатических единиц, то число образовавшихся пар ионов, как нетрудно подсчитать, будет равно для экспозиционной дозы в 1 рентген 208 миллиардам на 0,001293 г воздуха (такова масса одного кубического сантиметра). На образование одной пары ионов в воздухе в среднем затрачивается энергия, примерно равная 34 электрон-вольтам (эВ), следовательно, при экспозиционной дозе в 1 рентген в 1 см3 воздуха поглощается около 0,114 эрг или, в пересчете на один грамм воздуха, 88 эрг/г. Таким образом, 88 эрг/г – это энергетический эквивалент рентгена для воздуха.

Хотя однозначную связь между поглощенной дозой радиации и экспозиционной дозой, измеренной в рентгенах, можно установить лишь приближенно (с точностью до флуктуации), практическое удобство единицы «рентген» бесспорно, так как ионизацию в воздухе можно легко измерить с помощью ионизационной камеры. По результатам таких измерений мы можем судить о поглощенной энергии в биологической тк


Информация о работе «Единицы измерения в радиационной физике»
Раздел: Наука и техника
Количество знаков с пробелами: 18419
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
19395
0
0

еточном и молекулярном уровнях вызвали развитие микродозиметрии, исследующей передачу энергии излучения микроструктурам вещества.   Дозы и их характеристики, эквивалент поглощения   Доза (от греч. dosis - доля, порция) ионизирующего излучения, величина, используемая для оценки воздействия излучения на любые вещества и живые организмы. В зависимости от особенностей излучения и характера его ...

Скачать
17981
3
0

... топленки при ее проявлении. Плотность почернения про­порциональна поглощенной энергии излучения. Сравни­вая плотность почернения с эталоном, определяют дозу излучения (экспозиционную или поглощенную), получен­ную пленкой. Единицы измерения ионизирующих излучений. Для определения и учета величин, характеризующих ионизи­рующие излучения, введены понятия доз облучения и не­которых единиц измерения: ...

Скачать
54149
6
3

... . Измеряя выход химических реакций, т.е. количество вновь образованных конечных продуктов реакций, можно определить поглощенную энергию. На этом принципе основаны химические методы обнаружения и измерения радиоактивного излучения. Достоинство химических детекторов заключается в возможности выбора таких веществ, которые по воздействию на них ионизирующих излучений мало отличаются от тканей. ...

Скачать
40023
18
2

... друг от друга, поэтому их рассматривают как одну частицу — нуклон. Сильное взаимодействие действует на малых расстояниях (10-15 м) и превосходит электромагнитное и гравитационное, но оно уменьшается с увеличением расстояния. Атомное ядро любого химического элемента состоит из протонов и нейтронов, связанных между собой ядерными силами (сильным взаимодействием). Протон - ядро атома водорода имеет ...

0 комментариев


Наверх