100 мл 80%-ного раствора мелассы с добавлением 0,162 г М2.
τ1=88,2 с
τ2=87,1 с
τ3=87,3 с
τср=87,5 с
η0=τср·(ρш-ρр-ра)·К
η0=87,5·(8,14-1,425)·0,12446=73,1 Па·с
Проба №4
100 мл 80%-ного раствора мелассы с добавлением 0,243 г М2.
τ1=93,7 с
τ2=94,2 с
τ3=94,6 с
τср=94,2 с
η0=τср·(ρш-ρр-ра)·К
η0=94,2·(8,14-1,425)·0,12446=78,7 Па·с
Рис. 7. Определение оптимального количества М2 для снижения вязкости мелассы.
Опыт №5. Применение М-90.
Масса шарика – 14,4 г.
Плотность шарика ρш=8,14 г/мл.
Константа шарика К=0,12446
Температура в вискозиметре t=70 0С
Сухие вещества раствора мелассы СВ=80%
Плотность раствора мелассы ρр-ра=1,425 г/мл
Проба №1
100 мл 80%-ного раствора мелассы без добавления М-90.
τ1=96,0 с
τ2=90,2 с
τ3=93,5 с
τср=93,2 с
η0=τср·(ρш-ρр-ра)·К
η0=93,2·(8,14-1,425)·0,12446=77,89 Па·с
Проба №2
100 мл 80%-ного раствора мелассы с добавлением 0,081 г М-90.
τ1=82,8 с
τ2=83,3 с
τ3=81,9 с
τср=82,6 с
η0=τср·(ρш-ρр-ра)·К
η0=82,6·(8,14-1,425)·0,12446=69,1 Па·с
Проба №3
100 мл 80%-ного раствора мелассы с добавлением 0,162 г М-90.
τ1=76,8 с
τ2=75,6 с
τ3=75,9 с
τср=76,1 с
η0=τср·(ρш-ρр-ра)·К
η0=76,1·(8,14-1,425)·0,12446=63,6 Па·с
Проба №4
100 мл 80%-ного раствора мелассы с добавлением 0,243 г М-90.
τ1=68,9 с
τ2=71,1 с
τ3=69,5 с
τср=69,8 с
η0=τср·(ρш-ρр-ра)·К
η0=69,8·(8,14-1,425)·0,12446=58,3 Па·с
Проба №5
100 мл 80%-ного раствора мелассы с добавлением 0,324 г М-90.
τ1=55,8 с
τ2=53,0 с
τ3=54,4 с
τср=54,4 с
η0=τср·(ρш-ρр-ра)·К
η0=154,4·(8,14-1,425)·0,12446=65,1 Па·с
Рис. 8. Определение оптимального количества М-90 для снижения вязкости мелассы.
Опыт №6. Применение АМГД.
Масса шарика – 14,4 г.
Плотность шарика ρш=8,14 г/мл.
Константа шарика К=0,12446
Температура в вискозиметре t=70 0С
Сухие вещества раствора мелассы СВ=80%
Плотность раствора мелассы ρр-ра=1,425 г/мл
Проба №1
100 мл 80%-ного раствора мелассы без добавления АМГД.
τ1=96,0 с
τ2=90,2 с
τ3=93,5 с
τср=93,2 с
η0=τср·(ρш-ρр-ра)·К
η0=93,2·(8,14-1,425)·0,12446=77,89 Па·с
Проба №2
100 мл 80%-ного раствора мелассы с добавлением 0,081 г АМГД.
τ1=80,7 с
τ2=80,0 с
τ3=81,2 с
τср=80,6 с
η0=τср·(ρш-ρр-ра)·К
η0=80,6·(8,14-1,425)·0,12446=67,4 Па·с
Проба №3
100 мл 80%-ного раствора мелассы с добавлением 0,162 г АМГД.
τ1=72,6 с
τ2=71,1 с
τ3=70,4 с
τср=71,4 с
η0=τср·(ρш-ρр-ра)·К
η0=71,4·(8,14-1,425)·0,12446=59,7 Па·с
Проба №4
100 мл 80%-ного раствора мелассы с добавлением 0,243 г АМГД.
τ1=76,5 с
τ2=76,9 с
τ3=77,2 с
τср=76,9 с
η0=τср·(ρш-ρр-ра)·К
η0=76,9·(8,14-1,425)·0,12446=64,3 Па·с
Рис. 9. Определение оптимального количества АМГД для снижения вязкости мелассы.
Для выбора наиболее эффективного поверхностно – активного вещества обобщим все предыдущие исследования. Для этого построим общий график.
Рис. 10. Определение оптимального количества ПАВ для снижения вязкости мелассы.
Построим диаграмму, наглядно показывающую характер влияния ППАВ глицеридной природы на вязкость мелассы.
Рис. 11. Характер влияния ППАВ глицеридной природы на вязкость мелассы.
Наибольшее воздействие на величину вязкости мелассы оказывают дистиллированный моноглицерид марки ПГ-3.
Эффективность снижения вязкости мелассы (%) рассчитывали по формуле
,
где μ1 – вязкость контрольного раствора мелассы;
μ2 – вязкость мелассы с добавлением различных видов ППАВ глицеридной природы.
Результаты расчетов эффекта снижения вязкости сахарсодержащих растворов при добавлении различных видов пищевых ПАВ глицеридной природы представлены в таблице 4.
Таблица 4
Эффект снижения вязкости мелассы при добавлении различных видов ППАВ
Наименование показателя | ППАВ глицеридной природы | |||||
ПГ-3 | М-90 | ПО-90 | АМГД | М1 | М2 | |
Эффективность снижения вязкости мелассы, % | 36,7 | 25,1 | 24,8 | 23,4 | 14,4 | 6,1 |
Как видно из таблицы, наиболее эффективен дистиллированный моноглицерид ПГ-3.
3.4. Выводы и рекомендацииПо данным исследования наибольшее воздействие на величину вязкости мелассы оказывают дистиллированный моноглицерид марки ПГ-3, разработанный на основе пищевых поверхностно-активных веществ. Эффект снижения вязкости у него равен 36,7%, что существенно выделяет его по сравнению с другими марками поверхностно-активных веществ.
Рекомендуется использовать ПГ – 3 в продуктовом отделении свеклосахарного завода перед центрифугированием утфеля последней кристаллизации для улучшения отделения оттека – мелассы. При этом уменьшаются потери сахара в мелассе. Также ПГ – 3 можно использовать в процессах диффузии, на дефекосатурации. В процессе диффузии он позволяет интенсифицировать экстракцию сахарозы, дает возможность работать на более тонкой свекловичной стружке, уменьшает потери в жоме на 0,05 - 0,5 % к массе перерабатываемой свеклы. На дефекосатурации снижает пенение раствора.
Особенно важным является то, что ПАВ марки ПГ – 3 относится к пищевым поверхностно-активным веществам. Эта гигиеническая характеристика осуществлена в Институте питания Российской академии медицинских наук и Министерстве охраны здоровья Украины. Это позволяет использовать ПГ – 3 в пищевом производстве без вреда для здоровья человека.
4. Экономическая часть 4.1. РезюмеЭффективность работы свеклосахарного завода определяется многими факторами, главный из них - получение из сырья максимально возможное количество сахара в виде готовой продукции. Высокие технико-экономические показатели могут быть достигнуты при переработке свеклы с использованием современной технологии приемки, хранения сырья и ведения технологического процесса его переработки в оптимальном режиме, эксплуатации оборудования в соответствии с технологическими условиями, а также совершенствование технологии.
Мощность завода составляет 3,0 тыс. т переработки свеклы в сутки. Предполагаемый выход сахара 12,05%. Расход вспомогательных материалов будет составлять предположительно 246,0 руб. на 1 т сахара, затраты на топливо и энергию будут составлять 1885,9 руб. на 1 т сахара.
На заводе применяются прогрессивная техника и типовая схема получения сахара-песка.
Для решения вопросов охраны окружающей среды предусмотрена оборотная система водоснабжения, очистки сточных вод, выхлопов и т.д.
4.2. Маркетинговые исследованияСахар-песок является главным источником поступления углеводов в организм человека. Растворимый углевод - дисахарид сахароза, или обычный сахар, разлагается на моносахариды (глюкозу и фруктозу) и усваивается значительно быстрее крахмала, поэтому человек заменяет в своем питании часть крахмала сахаром, имеющим, кроме того, сладкий вкус. Для быстрого восстановления затраченной энергии (при походах, спорте, большой физической работе, для больных и выздоравливающих) сахар как питательное вещество особенно ценен по быстроте и легкости его усваивания. Благодаря ценным пищевым, вкусовым и физическим свойствам сахар-песок стал важнейшим пищевым продуктом первой необходимости. По этой причине сахар пользуется большим спросом у потребителей. Кроме того, сахар-песок, а также сахар-рафинад продолжают пользоваться спросом еще и по той причине, что появившиеся заменители еще не получили столь широкого распространения в нашей стране.
Потребителями сахара-песка являются потребительский или розничный рынок, промышленно-производственный рынок (предприятия и компании, которые покупают сырье для производства собственной продукции, к ним относятся: хлебозаводы, кондитерские и консервные предприятия, молочно-консервные комбинаты, заводы по производству алкогольных продуктов и др.) и посреднический рынок (оптовые или розничные торговцы-посредники).
Сбыт сырья будет осуществляться через посреднические фирмы или, например, через собственный магазин.
Хорошее качество сахара-песка, соответствующее ГОСТ 2194, близость расположения проектируемого завода к железнодорожной станции и автомагистрали делает привлекательным данный завод для потребителей.
Большое внимание уделяется усовершенствованию технологии получения сахара-песка.
Одним из методов повышения выхода сахара-песка из сахарной свеклы является использование поверхностно-активных веществ для интенсификации уваривания и центрифугирования утфелей, снижения вязкости сахарных растворов и мелассы, а также для гашения пены на дефекосатурации и других процессах производства.
В данной работе исследовалось влияние ПАВ на вязкость продуктов сахарного производства. В работе использовались такие ПАВ завода АООТ «Нижегородского масложирового комбината», как:
дистиллированный моноглицерид ПО-90;
дистиллированный моноглицерид М-90;
АМГД;
пеногаситель ПГ-3;
дистиллированный моноглицерид М1;
дистиллированный моноглицерид М2.
4.3. Калькуляция себестоимости сахарного пескаКоличество перерабатываемой свеклы за сезон при длительности сокодобывания
100 суток:
100 · 3000 · 0,96 = 288,0 тыс. т.
Для того, чтобы обеспечить завод на весь сезон и обеспечить выработку сахара-песка необходимо учесть потери сахарной свеклы за период хранения, которые составляют 3,5%.
Учитывая потери свеклы, необходимо заготовить:
тыс. т.
Потребность условного топлива на переработку свеклы:
тыс. т.
Количество натурального топлива – мазута – на переработку свеклы:
тыс. т.
Стоимость мазута:
13,76 · 3 200 = 44 032,0 тыс. руб.
Расход условного топлива на обжиг известняка:
,
где К – норма расхода камня,
Мк – норма расхода условного топлива.
%
Количество условного топлива на обжиг известняка:
тыс. т.
На обжиг известняка используют кокс стоимостью:
2,02 · 4000 = 8080 тыс. руб.
Общий расход топлива:
44 032,0 + 8 080 = 52 112 тыс.руб.
Общий расход на электроэнергию:
Кэл.=Nгод · Нрасх.,
где Нрасх. – норма расхода энергии на 1 т свеклы (31,5 КВт)
Кэл. = 288 000 · 31,5 = 9 072 000 КВт
Стоимость затрат на электроэнергии:
9 072 000 · 1,47 = 13 335,84 тыс.руб.
Стоимость затрат на топливо и энергию:
52 112 + 13 335,84 = 65 447,84 тыс.руб.
Заготовлено – 298,4 тыс. т
Потери при хранении и транспортировке – 10,4 тыс. т
Переработано – 288,0 тыс. т
Выход сахара – 12,05 %
Выработка сахара – 34704 т
Таблица 5
Калькуляция себестоимости сахара-песка
№ п/п | Перечень статей | Ед. измер. | Кол-во | Цена, руб. | Сумма, тыс. руб. | На 1т сахара, тыс. руб. |
1 | Сырье (сах. свекла) | т | 288 000 | 800 | 230 400 | 6639,0 |
2 | Вспомогательные материалы: - известковый камень - холст фильтровальный - прочие | т м2 | 22 464 17 280 | 197,64 55,9 | 4 439,8 965,9 3 132,3 | 127,9 27,8 90,3 |
3 | Топливо и энергия на технологические цели | 65 447,84 | 1 885,9 | |||
4 | Оплата труда | 15 526,2 | 447,4 | |||
5 | ЕСН | 4 036,8 | 116,3 | |||
6 | Общепроизводственные расходы | 30 465,8 | 877,9 | |||
7 | Общехозяйственные расходы | 16 760,0 | 482,9 | |||
8 | Итого производственная себестоимость | 371174,64 | 10 695,4 | |||
9 | Внепроизводственные расходы | 20 000 | 576,3 | |||
10 | Полная себестоимость | 391174,64 | 11 271,7 |
Полная себестоимость – 11 271,7 руб.
Рентабельность (15%) – 1 690,7 руб.
Оптовая цена предприятия – 12 962,4 руб.
НДС (10%) – 1 296,2 руб.
Отпускная цена – 14 258,6 руб.
4.4. Расчет экономической эффективностиВ работе проведены исследования влияния ПАВ на вязкость мелассы.
Установлено, что положительными качествами обладают ряд ПАВ Нижегородского
масложирового комбината. Определим экономическую эффективность от применения данных поверхностно-активных веществ.
Таблица 6
Исходные данные
Производственная мощность | 3 000 тонн свеклы в сутки |
Длительность производственного сезона | 100 суток |
Коэффициент использования производственной мощности | 0,96 |
Норма амортизации | 11,8 |
Себестоимость сахара-песка | 11271,7 рублей за тонну |
Капитальные вложения | 1 300 000 рублей |
Стоимость научно-исследовательских разработок | 200 000 рублей |
Стоимость поверхностно-активных веществ | 45 000 рублей за тонну |
Количество поверхностно-активных веществ израсходованных за сезон | 7,8 тонны |
Выход сахара-песка среднепроизводственный | 12,05% |
Увеличение выхода сахара-песка | 0,05% |
Расчет
Капитальные затраты:
1 300 000 + 200 000 = 1 500 000 рублей.
Количество переработанной свеклы за сезон:
3 000 · 100 · 0,96 = 288 000 тонн.
Количество сахара-песка до внедрения ПАВ:
тонн.
Количество сахара-песка после внедрения ПАВ:
тонн.
Дополнительный выпуск сахара-песка:
34 848 – 34 704 = 144 тонн.
Дополнительные затраты на амортизацию:
тонн.
7. Затраты связанные с использованием поверхностно-активных веществ:
7,8 · 45 000 = 351 000 рублей.
Общие дополнительные затраты:
177 000 + 351 000 = 528 000 рублей.
Полная себестоимость сахара-песка до внедрения ПАВ:
34 704 · 11 271,7 = 391 173 076,8 рублей.
Полная себестоимость сахара-песка после внедрения ПАВ:
391 173 076,8 + 528 000 = 391 701 076,8 рублей.
Себестоимость 1 тонны сахара-песка после внедрения ПАВ:
тонн.
Снижение себестоимости:
11 271,7 – 11240,3 = 31,4 рубля.
Условно-годовая экономия на весь период производства:
31,4 · 34 848 = 1 094 227,2 рублей.
14. Срок окупаемости:
сезона.
Таблица 7
Результаты технико-экономических показателей
№ п/п | Наименование показателей | Единицы измерения | До внедрения ПАВ | После внедрения ПАВ |
1 | Производственная мощность | Тонн свеклы в сутки | 3 000 | 3 000 |
2 | Длительность производственного сезона | Сутки | 100 | 100 |
3 | Капитальные затраты | Руб. | - | 1 300 000 |
4 | Затраты на научно-исследовательские разработки | Руб. | - | 200 000 |
5 | Выход сахара-песка | % к массе свеклы | 12,05 | 12,10 |
6 | Дополнительный выпуск сахара-песка | Тонн | - | 144 |
7 | Себестоимость 1 тонны сахара-песка | Руб. | 11271,7 | 11240,3 |
8 | Условно-годовая экономия | Тыс. руб. | - | 1 094,2 |
9 | Срок окупаемости | Сезон | - | 1,4 |
Одним из направлений повышения выхода и качества сахара-песка является использование поверхностно-активных веществ в сахарной промышленности.
Начальная цена нижегородских ПАВ за 1 тонну составляет 45 000 рублей.
Сахарному заводу на сезон потребуется 7,8 тонн ПАВ, что составляет 351 000 рублей за производственный сезон. Условно-годовая экономия от внедрения ПАВ составляет 1 094 ,2 тыс. рублей. Срок окупаемости 1,4 сезона.
5. Охрана труда и окружающей средыОхрана труда – система сохранения жизни и здоровья работников процессе трудовой деятельности, включающая в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия (Трудовой Кодекс Российской Федерации, статья 209).
Главным условием безопасности работы как в лаборатории, так и на производстве, является соблюдение требований охраны труда, основной задачей которой является охрана здоровья людей, работающих в разных отраслях народного хозяйства, путем создания безопасных и благоприятных условий труда.
Соблюдение требований охраны труда обуславливают создание условий труда, отвечающих требованиям нормативных документов, снижение неблагоприятного влияния факторов профессионального воздействия на функциональное состояние и здоровье работающих, снижение уровня производственного травматизма.
Химическая лаборатория должна отвечать требованиям правил и норм по охране труда, должна обеспечить безопасные условия труда для студентов. В правилах и нормах по охране труда определены требования, обеспечивающие здоровые и безопасные условия труда, правильную эксплуатацию оборудования, содержание производственных помещений и рабочих мест в соответствии с санитарно-гигиеническими нормами.
Экспериментально - исследовательская работа была проведена в исследовательской лаборатории кафедры «Технология сахара и сахаристых веществ».
5.1. МикроклиматСанитарные нормы микроклимата производственных помещений СанПиН 2.2.4.548-96 «Гигиенические требования к микроклимату производственных помещений» устанавливают общие санитарно-гигиенические требования к температуре, влажности, корости движения воздуха, интенсивности теплового излучения.
Различают оптимальные и допустимые показатели микроклимата для рабочей зоны закрытых производственных помещений с учетом интенсивности энергозатрат, времени выполнения работы выполняемой работы и периодов года.
Оптимальными микроклиматическими условиями считаются такие, сочетание которых при длительном и систематическом воздействии на человека сохраняют его нормальное тепловое состояние без напряжения механизма терморегуляции. Допустимые условия в отличие от оптимальных могут вызывать проходящие и быстро нормализующиеся изменения теплового состояния организма, сопровождающиеся напряжением механизма терморегуляции, не выходящим за пределы физиологических приспособительных возможностей.
Оптимальные показатели микроклимата распространяются на всю рабочую зону помещения без разграничения рабочих мест на постоянные и непостоянные, а допустимые – для каждой разновидности этих мест.
На свеклосахарном заводе источниками тепловыделения является такое оборудование как диффузионный аппарат, дефекаторы, сатураторы, выпарная станция, вакуум-аппараты.
Так как в лаборатории, где проводилась работа, тепловыделение незначительное, то для сравнения учитываются оптимальные условия. Оптимальные величины температуры, влажности, скорости движения воздуха, а также температура поверхностей, установленные для рабочей зоны данной лаборатории с учетом тяжести выполняемой работы и периодов года, сведены в таблице 8. Работы, выполняемые в лаборатории, относятся к легким физическим работам категории 1 с интенсивностью энергозатрат 139 Вт. Работа осуществлялась сидя, стоя или связанная с ходьбой, но не требующая систематического физического напряжения или поднятия и переноски тяжести.
Таблица 8
Нормируемые оптимальные параметры микроклимата в рабочей зоне производственных помещений.
Период года | Категория работ по уровню энергозатр. Вт. | Температура, С | Температура поверхностей, °С | Относительная влажность, % | Скорость воздуха, м/с |
Холодный | Легкая – 1а (до 139) | 22-24 | 21-25 | 60-40 | Не более 0,1 |
Теплый | Легкая – 1а (до 139) | 23-25 | 22-26 | 60-40 | Не более 0,1 |
Содержание вредных веществ в воздухе рабочей зоны устанавливаются в соответствии с ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны». Решения этих вопросов помогут в значительной степени снизить заболевания, утомляемость.
Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны (ПДК) — концентрации, которые при ежедневной (кроме выходных дней) работе в течение 8 ч или при другой продолжительности, но не более 40 ч в неделю, в течение всего рабочего стажа не могут вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдельные сроки жизни настоящего и последующего поколений (ГОСТ 12.1.005-88 «Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны»).
Едкие вещества (кислоты, щелочи), попадая на кожу человека, вызывают ожоги, а также поражение глаз. Ядовитые вещества проникают в организм человека через кожу, пищевод, дыхательные пути, вызывая острое отравление.
По степени воздействия на организм вещества подразделяются на 4 класса опасности:
– чрезвычайно опасные;
– высокоопасные;
– умеренноопасные;
– малоопасные.
В зависимости от опасности вещества устанавливается его ПДК в воздухе рабочей зоны. Предельно допустимые являются такие концентрации, которые при ежедневной работе в течение смены и на протяжении всего трудового стажа не вызывают у работающих заболеваний или отклонений в состоянии здоровья как в период работы, так и в отдаленны сроки жизни настоящего и последующего поколений. ПДК газов, паров, пыли и уровни загрязнения ими воздуха определяются в гравиметрических показателях (мг/м3), т.е. по содержанию массы вредного вещества в 1 м3 воздуха.
При выполнении данной экспериментально - исследовательской работы использовались следующие химические соединения: поверхностно-активные вещества ПО-90, М-90, М-90А, ПГ-3, М1, М2, АМГД, меласса. Все применяемые вещества не являются вредными веществами. ПДК сахарной пудры в воздухе рабочей зоны до 10 мг/м³. По органолептическим показателям, ПАВ соответствуют следующим требованиям: имеют светло-желтый или белый цвет, имеют консистенцию мягкого пластического продукта.
Тара для хранения ПАВ, мелассы, утфеля должна быть прочной, чистой, сухой, без посторонних запахов, с плотно закрывающейся крышкой, относительная влажность воздуха не должна превышать 80%, температура хранения – 0-20°С.
Санитарно-гигиенические условия в лаборатории в наибольшей степени зависят от эффективности работы вентиляционных установок.
Вентиляция - это воздухообмен, осуществляемый с целью поддержания в производственных помещениях метеорологических условий (температура, относительная влажность, скорость движения воздуха) и чистоты воздуха, удовлетворяющий санитарно-гигиеническим требованиям.
5.1.2. ВентиляцияВентилирование рабочей зоны проводят в соответствии в СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование».
Санитарно-гигиенические условия в лаборатории в наибольшей степени зависят от эффективности вентиляционных установок. По способу подачи в помещение воздуха и удаления его, вентиляцию делят на естественную, механическую и смешанную.
По значению вентиляция может быть общеобменной и местной.
Естественная вентиляция создает необходимый воздухообмен за счет разности плотности теплого и холодного воздуха, находящегося внутри помещения и более холодного снаружи, а также за счет ветра.
Естественная вентиляция экономична и проста в эксплуатации. Недостатком ее является то, что воздух не подвергается очистке и подогреву при поступлении, удаляемый воздух также не очищается и загрязняет атмосферу.
Механическая вентиляция состоит из воздуховодов и побудителей движения воздуха (механических вентиляторов и т.п.).
Воздухообмен осуществляется независимо от внешних метеорологических условий, при этом поступающий воздух может подогреваться или охлаждаться, подвергаться увлажнению либо осушению. Выбрасываемый воздух может подвергаться очистке.
Механическая общеобменная вентиляция бывает приточной, вытяжной, приточно-вытяжной.
Приточная система вентиляции производит забор воздуха через воздухозаборное устройство, затем воздух проходит через калорифер, где воздух нагревается и увлажняется, и вентилятором подается по воздухопроводам в помещение через насадки для регулировки воздуха. Загрязненный воздух вытесняется через двери, окна, щели. Вытяжная вентиляция удаляет загрязненный и перегретый воздух через воздухоотводы и очиститель, а свежий воздух поступает через окна, двери и неплотности конструкций.
Приточно-вытяжная система вентиляции состоит из приточной и вытяжной, работающих одновременно.
Местная вентиляция проветривает места непосредственного выделения вредностей, и она также может быть приточной, вытяжной или приточно-вытяжной. Примером ее является вытяжной шкаф. Вытяжная вентиляция удаляет загрязненный воздух по воздуховодам; воздух забирается через воздухоприемники, которые могут быть выполнены в виде вытяжного шкафа, вытяжного зонта, бортовых отсосов.
Местные отсосы устраиваются непосредственно у мест выделения вредностей.
В лаборатории все опыты связанные с применением или образованием ядовитых веществ, а также вредных паров и газов, необходимо проводить только в вытяжном шкафу. В случае прекращения работы вентиляционных установок все опыты в вытяжных шкафах должны быть прекращены.
Поддержание в лаборатории санитарно-гигиенических условий осуществляется за счет:
перемещения воздуха – естественная, местная и приточная вентиляция;
рациональное отопление и повышение температуры в помещениях в холодный период за счет отопительной системы;
дополнительной защиты от теплового излучения нагретых поверхностей (технологического оборудования, осветительных приборов, открытые источников (открытое пламя)) вентиляция, теплоизоляция приборов, помещений;
теплоизоляции нагретых поверхностей (технологического оборудования, осветительных приборов, открытые источников (открытое пламя)) оборудования, осуществляемой во избежание вредного ИК-излучения, и возможности воздействия опасного фактора в виде ожога.
В лаборатории, где осуществлялась данная исследовательская работа, принята вентиляция:
- по способу перемещения воздуха:
а) естественная;
б) принудительная;
- по способу организации воздухообмена:
а) местная вентиляция (вытяжной шкаф);
- по функциональному признаку:
а) приточно-вытяжная.
Необходимое количество вентиляционного воздуха определяется санитарными нормами в зависимости от объема помещения, приходящегося на одного работающего. В химической лаборатории удельный объем помещения, приходящийся на одного работающего, составляет меньше 20 м³, поэтому подача наружного воздуха предусматривается в количестве не менее 30 м³ /ч. Подача свежего воздуха в рабочую зону осуществляется на высоте 1,5-2 м от пола.
Расчет вентиляции:
Вентиляция осуществляется одним вентилятором диаметром 0,3 м. Кратность воздухообмена может быть определена по формуле
, об/час
где W – объем помещения (W=540 м2);
L – объем воздуха, подаваемого вентилятором в помещении в час
L = 3600 × Sвент × n,
где Sвент - площадь вентилирования;
n - скорость потока воздуха (3,5 м/с).
м2
L = 3600 × 0,07 × 3,5 = 882 об/час
об/час
0 комментариев