1. Система учебной работы по развитию самостоятельности и
творческой активности школьников.
Первый уровень – простейшая воспроизводящая самостоятельность. Особенно ярко проявляется этот уровень в самостоятельной деятельности при выполнении упражнений, требующих простого воспроизведения имеющих знаний, когда учащийся, имея правило, или образец, самостоятельно решает задачи, упражнения на его применении. Если же задача не соответствует образцу, то он решить ее не может и даже не предпринимает попыток, а чаще всего отказывается от решения под предлогом, что такие задачи ещё не решались.
Первый уровень прослеживается в учебно-познавательной деятельности многих учеников, приступивших к внеурочным занятиям. Поэтому задача учителя не в игнорировании его, полагая, что школьники, посещающие внеурочные занятия уже достигли более высокого уровня, а в обеспечении перехода всех учащихся на следующий уровень.
Второй уровень самостоятельности можно называть вариативной самостоятельностью, которая проявляется в умении из нескольких правил, определений, образцов рассуждений выбрать одно определенное и использовать его в процессе самостоятельного решения новой задачи. На данном этапе самостоятельности учащийся показывает умение производить мыслительные операции, такие как сравнение, анализ. Анализируя условие задачи, ученик перебирает имеющиеся в его распоряжении средства для её решения, сравнивает их и выбирает более действенное.
Третий уровень самостоятельности – частично поисковая самостоятельность. Самостоятельность ученика на этом уровне проявляется в умении из имеющихся у него правил и предписаний для решения задач определенного раздела математики:
- формировать обобщенные способы для решения более широкого класса задач, в числе и из других разделов математики;
- в умении осуществить перенос математических методов, рассмотренных в одном разделе, на решение задач из другого раздела или из смежных учебных предметов;
- в стремлении найти «собственное правило», прием, способ деятельности;
- в поисках нескольких способов решения задачи и в выборе наиболее рационального, изящного;
- в варьировании условия задачи и сравнении соответствующих способов решения.
В названных проявлениях самостоятельности присутствуют элементы творчества.
Ученик на этом уровне обладает относительно большим набором приёмов умственной деятельности – умеет проводить сравнение, анализ0 синтез, абстрагирование. В его деятельности значительное место занимает контроль результатов и самоконтроль. Он может самостоятельно спланировать и организовать свою учебную деятельность.
На внеурочных занятиях в X, а особенно в XI классах самостоятельность некоторых учащихся носит творческий характер, что находит выражение
- в самостоятельной постановке ими проблемы или задачи, в составлении плана её решения и отыскании способа решения;
- в постановке гипотез и их проверке;
- в проведении собственных исследований.
Поэтому целесообразно выделить высший, четвертый уровень самостоятельности – творческая самостоятельность.
В соответствии с выделенными уровнями осуществляется четыре этапа учебной работы. Каждый этап связан с предыдущим и последующим и должен обеспечивать переход школьника с одного уровня самостоятельности на следующий уровень.
Первый этап ставит целью выход учащегося на первый уровень самостоятельности.
На этом уровне учитель знакомит учащихся с элементарными формами познавательной деятельности, сообщает математические сведения, разъясняет, как можно было бы получить их самостоятельно.
С этой целью он использует лекционную форму обучения или рассказ, а затем организует самостоятельную деятельность учеников, состоящую в изучении доступного материала учебного пособия и решении задач, предварительно разработанных учителем в качестве примеров. Эта деятельность учителя и учащихся на занятиях соответствует аналогичной деятельности на уроках математики и довольно хорошо освещена в методической литературе.
На данном этапе учитель организует элементарную работу учащихся по математическому самообучению:
-просмотр математических телевизионных передач во внеурочное время;
- самостоятельное решение конкурсных задач из сборников, содержащих подобные решения или указания для контроля, причем с обязательным условием использования при решении некоторых из них знаний, полученных на внеурочных занятиях.
На втором этапе учебной работы преподаватель привлекает учащихся к обсуждению различных способов решения познавательной задачи и отбору наиболее рационального из них, поощряет самостоятельную деятельность учеников в сравнении способов.
Знакомит учащихся с общими и частными указаниями, содействующими самостоятельному выбору путей решения познавательной задачи с помощью уже изученных приёмов, способов и методов решения аналогичных задач.
На этом этапе учитель широко использует метод эвристической беседы, организует самостоятельное изучение учащимися нового материала по учебным пособиям, раскрывающим материал конкретно-индивидуальным способом и содержащим большое число примеров различной трудности.
На втором этапе продолжается работа по организации математического самообучения учащихся и руководству им. Ученики решают задачи из сборников конкурсных задач, готовятся к школьным математическим олимпиадам, читают доступную научно-популярную литературу, например из серии «Популярные лекции по математике».
Руководство самостоятельной деятельностью учащихся на этом этапе носит фронтально-индивидуальный характер: учитель даёт рекомендации по самообучению всем учащимся, но выполнение их не обязательно для всех; помощь преподавателя в организации математического самообучения учащихся носит индивидуальный характер.
Третий этап наиболее ответственный, так как именно на этом этапе должен произойти выход всех учащихся на основной уровень самостоятельности.
Здесь большое внимание уделяется:
-организации самостоятельного изучения учащимися дополнительной учебной, научно-популярной и научной математической литературы, сопровождаемого решением достаточного числа задач;
- подготовке рефератов и докладов по математике;
- творческому обсуждению докладов и сообщений на семинарах, организуемых на факультативе (постановка и обсуждение гипотез, задач-проблем, математических методов, возможных обобщений или приложений изученной теории);
- участию в школьном конкурсе по решению задач, в школьной, городской или районной олимпиаде по математике, в заочных олимпиадах и конкурсах;
- самообучению учащихся с учетом индивидуальных интересов и потребностей.
Например, в качестве рефератов могут быть предложены классические задачи древности: о квадрате круга, об удвоении куба, о трисекции угла. Примером приложения изученной теории может служить использование метода координат к решению геометрических задач. Как задача-проблема ставится вопрос о вычислении работы переменной силы.
На этом этапе учитель организует на занятиях:
- обобщающие беседы по самостоятельно изученному школьниками материалу;
- систематизирует знания учащихся; учит приёмам обобщения и абстрагирования;
- проводит разбор найденных учениками решений;
- показывает, как надо работать над задачей (все ли случаи рассмотрены, нет ли особых случаев, нельзя ли обобщить найденный способ, чтобы можно было применить его к целому классу задач и т.п.);
- учит выдвигать гипотезы, искать пути предварительного обоснования или опровержения их индивидуальным путём, а затем находить дедуктивные доказательства;
- с помощью проблемных вопросов создаёт дискуссионную обстановку, направляет ход дискуссии и подводит итоги и т.д.
Большое внимание уделяется индивидуальной работе с учащимися: оказание ненавязчивой помощи некоторым ученикам в поисках путей решения задачи, в подготовке к математическим олимпиадам, в подборе литературы для рефератов и их письменном оформлении, организации осуществлении математического самообучения.
На четвёртом этапе основной формой является индивидуальны работа с учащимися, дифференцируемая с учётом познавательных интересов и потребностей и профессиональной ориентацией каждого.
Самостоятельная работа школьника на этом этапе работы носит поисково-исследовательский характер и требует творческих усилий.
Учащиеся самостоятельно в течение сравнительно длительного срока решают задачи, сформулированные ими самими или выбранные из предложенных учителем.
Помощь преподавателя заключается в проведении индивидуальных консультаций, в рекомендации соответствующей литературы, в организации обсуждений найденного учеником доказательства и т.п.
На этом этапе проводят конкурсы по решению задач, самостоятельная подготовка победителей школьной математической олимпиады к районной (областной, всероссийской) олимпиаде (под руководством учителя); продолжается работа по самообучению
Наиболее глубоко и полно система учебной работы по развитию самостоятельности и творческой активности школьников реализуется при изучении факультативных курсов по математике.
2. Методические рекомендации по активизации внеклассной
работы.
Активизация внеклассной работы по математике признана не только возбуждать и поддерживать у учеников интерес к математике, но и желание заниматься ею дополнительно. Как под руководством учителя во внеурочное время, так и при целенаправленной самостоятельной деятельности по приобретению новых знаний, т.е. путём самообучения.
Конкурсы - одна из форм внеурочной работы, обладающей большим эмоциональным воздействием на учащихся:
«А ну-ка математики!»
Конкурс межпредметного содержания:
«А ну-ка математики»
«Математика вокруг нас»
Математические викторины:
«Что, где, почему?»
Математический утренник:
«В День знаний – мир математических знаний».
Математический вечер:
Математизация знаний в современном мире».
Математическая неделя:
«Знай и умей».
Математический КВН
Математическая эстафета.
Математический бой.
Математический бой абитуриентов.
Математический хоккей.
Массовые состязания школьников на занятиях математического кружка.
Математические игры с микрокалькулятором
Математические и логические игры на компьютере
Конкурс-состязание:
«Кто больше…»
Занятия семинары:
«Преобразование фигур на координатной плоскости»
«Площадь треугольника»
Занятия практикумы:
«Преобразование графиков функций и уравнений».
«Площадь треугольника, заданная координатами его вершин».
Заочные конкурсы по решению задач.
Математические сочинения:
«Прямая и её уравнения»
«Окружность и её уравнения»
«Эллипс и его уравнения»
«Гипербола и её уравнения»
ЛИТЕРАТУРА:
Степанов В.Д. Активизация внеурочной работы по математике в средней школе.
Гусев В.А., Орлов А.И., Розенталь А.П. Внеклассная работа по математике в 6-8 классах.
Понтрягин Л.С. Знакомство с высшей математикой.
Окунев А.А. Спасибо за урок, дети.
Кордемский Б.А., Ахадов А.А. Удивительный мир чисел
Рыбников К.А. Профессия – математик.
Сефибеков С.Р. Внеклассная работа по математике
... но все они сходятся в одном, что игра является способом развития личности, обогащения ее жизненного опыта. - Из всего многообразия игр можно выделить математическую игру, как средство развития познавательного интереса учащихся к математике. Использование математической игры во внеклассной работе по математике наиболее эффективно способствует возникновению интереса у учащихся к математике. - ...
... учителя); продолжается работа по самообучению. Наиболее глубоко и полно система учебной работы по развитию самостоятельности и творческой активности школьников реализуется при изучении факультативных курсов по математике. 2. ОБУЧЕНИЕ ЧЕРЕЗ ЗАДАЧИ Метод обучения математике через задачи базируется на следующих дидактических положениях: 1) Наилучший способ обучения учащихся, дающий им ...
... дидактических игр на уроках математики, анализ игровой деятельности Изучив теоретические материалы по развитию мотивации познавательной деятельности, у автора возникло желание и интерес реализации этого на практике. Для того чтобы доказать или опровергнуть, что использование дидактических игр на уроках математики активизирует познавательную деятельность учащихся, автором работы в 6 «б» ...
... труде - все это формирует и развивает познавательный интерес и превращает его в важный стимул учебной деятельности учащихся [20,46]. Существуют различные средства развития познавательного интереса: решение занимательных, логических задач, игра, исторические экскурсы и другие. Наиболее подробно остановимся на исторических экскурсах. Знакомство с историей науки полезно для каждого человека, а для ...
0 комментариев