2.2 Способы сканирования
Сканирование поверхности может происходить двумя способами, — сканирование кантилевером и сканировение подложкой. Если в первом случае движения вдоль исследуемой поверхности совершает кантилевер, то во втором относительно неподвижного кантилевера движется сама подложка. Для сохранения режима сканирования, — кантилевер должен находиться вблизи поверхности, — в зависимости от режима, — будь то режим постоянной силы, или постоянной высоты, существует система, которая могла бы сохранять такой режим во время процесса сканирования. Для этого в электронную схему микроскопа входит специальная система обратной связи, которая связана с системой отклонения кантилевера от первоначального положения. Уровень связи (рабочая точка) кантилевер—подложка задается заранее, и система обратной связи отрабатывает так, чтобы этот уровень поддерживался постоянным независимо от рельефа поверхности, а сигнал, характеризующий величину отработки и является полезным сигналом детектирования[2,5].
Образец (поверхность) и кантилевер сближаются с помощью шагового двигателя до тех пор пока поверхность и кантилевер не начнут взаимодействовать, что приведёт к такому смещению лазерного луча на секциях фотодиода,а значит к такому разностному току, что обратная связь прекратит сближение.
Кантилевер непосредственно связан с четырёхобкладочной пьезотрубкой, подавая напряжение на противоположные обкладки, можно соответственно менять изгиб трубки, а значит и область сканирования кантилевера (горизонтальтное отклонение пьезотрубки) вдоль соответственно оси абсцисс и оси ординат. Внутри трубки находиться также пьезоэлемент, который отвечает за смещение кантилевера вдоль нормали к поверхности, то есть оси аппликат. При сканировании поверхности задается рабочая точка, физический смысл которой есть величина выдвижения пьезотрубки по отношению в максимальной амплитуде (обычно около 50 %). Обратная связь отрабатывает величину выдвижения пьезотрубки для поддержания режима (постоянной силы или постоянной высоты, в случае СТМ — постоянного туннельного тока) сканирования. В случае сканирования подложкой такая система присоединена к подложке[1,2].
3. Исследование механических свойств полимерных пленок
В последнее время не ослабевает интерес к нанотехнологиям, в частности к процессам самоорганизации в материалах. В свете этого становится очевидна необходимость разработки новых нетрадиционных подходов для выявления корреляции "структура-свойства" гетерофазных полимерных систем.
Исследование механических свойств полимерных пленок (измерение модуля Юнга, коэффициента Пуассона и т.д.) является важной практической задачей, связанной с существенными экспериментальными сложностями. Поскольку пленки тонкие и гибкие, для регистрации их деформаций требуются специальные методы. В частности, для исследования деформаций поверхности пленок может быть использована атомно-силовая микроскопия, за которой в последние годы закрепился статус одного из основных методов исследования поверхности твердых тел [1,2]. Ее основное преимущество перед другими видами микроскопии (оптической, электронной, Оже) состоит в том, что она позволяет получить трехмерное изображение, т.е. предоставляет информацию о структуре и микрорельефе поверхности. Хотя этот метод применяется для изучения чрезвычайно широкого класса объектов (макромолекул, биологических объектов, наноструктур), лишь в нескольких работах он был использован для прямого изучения деформацій полимеров[1,2].
3.1 Исследование деформированой поверхности
Все методы описания деформаций можно разделить на две группы в зависимости от того, исследуется ли образец непосредственно в процессе или после деформации. К первой группе относятся, например, наблюдение деформируемого образца под оптическим микроскопом и уникальные эксперименты по деформации углеродных нанотрубок под электронным микроскопом [10]. В таких случаях иногда говорят, что исследование происходит в реальном времени, in situ. Ко второй группе относятся эксперименты, в которых деформация и изучение образца производятся на разных устройствах. В этом случае экспериментатора обычно интересуют средние, общие характеристики и параметры образца, а не особенности его конкретной точки или области[5].
В таком контексте применение атомно-силовой микроскопии для описания деформаций поверхности имеет особое место. Для того, чтобы наблюдать деформацию поверхности в АСМ, необходимо ступенчато увеличивать нагрузку, и при каждом ее значении исследовать поверхность. По-видимому, первой работой, в которой, предложен такой эксперимент, была статья [3]. Схема использованной авторами установки показана на рис. 1. Пленка ориентированного полиэтилентерефталата (ПЭТФ) размещалась в специальном зажиме, на который сверху устанавливался АСМ. Проводилось сканирование участка поверхности вблизи заметного в оптический микроскоп дефекта, затем образец деформировался. Рис 1 Схема установки для деформации пленок и наблюдения в АСМ [3] Один из зажимов неподвижен. Специальная система винтов позволяла корректировать положение АСМ так, чтобы после деформации можно было вновь исследовать тот же самый участок. Прикладываемое к образцу напряжение измерялось специальным датчиком, а величина деформации измерялась по смещению микроскопических дефектов и неровностей на кадре размером 50*50мкм. Таким методом была получена силовая кривая и измерен коэффициент Пуассона. Было показано, что отношение боковой контракции к продольной деформации растет в процессе вытяжки от 0,25 при деформации 25% до 0,45 при деформации 50%[2,5].
В работе тех же авторов [4] исследовалась пленка из полиимида. В процессе вытяжки образца макроскопическая деформация (между зажимами) сравнивалась с микроскопической (измеренной на масштабах 50 мкм и 5мкм).
Авторами было показано, что эти кривые в пределах погрешности совпадают, т.е. наблюдается аффинная деформация образца. Авторы работы [5] предложили использовать аналогичный метод для измерения коэффициента Пуассона тонких пленок, изготовленных из различных материалов (ПЭТФ, полиэтил).
... моделью) целого семейства еще более совершенных сканирующих микроскопов ближнего поля с зондами-остриями. Необходимость дальнейших разработок диктовалась необходимостью избавиться от основного недостатка базового микроскопа – электропроводности объектов, а ведь даже проводники и полупроводники часто покрыты изолирующим слоем оксида. Не проводят ток и биологические материалы. В 1985 г. в США ...
... образец располагается в области объективной линзы 5. Проекционная и промежуточная линзы выполняют функцию окуляра. Изображение формируется на флуоресцирующем экране. Рис. 2. Схема просвечивающего электронного микроскопа: 1 - катод, 2 - управляющий электрод, 3 - анод, 4 - конденсорная линза, 5 - объектная линза, 6 - апертурная диафрагма, 7 - селекторная диафрагма, 8 - промежуточная линза, 9 - ...
... (молекулами), записи и хранения информации с предельно возможным в природе разрешением ~10–10 м (для атомарных структур), а также последующего ее считывания. Что впереди? Дальнейшее развитие нанотехнологии предусматривает переход от отдельных элементов и их сборок к интегрированию сенсорной, логически-аналитической, двигательной и исполнительной функции в одном устройстве. Первый шаг в этом ...
что умещается по размерам в диапазон от атомов до вирусов (0,1-100 нм). Почему диапазон наноразмеров вызывает повышенный интерес ученых и технологов? Дело в том, что оперировать с предметами таких размеров исследователи научились совсем недавно. А ведь именно на этом уровне наблюдаются многие процессы фундаментальной важности - от химических реакций до квантовых эффектов. Знание этих процессов ...
0 комментариев