3.5. Влияние технологий возделывания на накопление хлорофилла в листьях озимой пшеницы
Местом фотосинтеза в клетке являются хлоропласты: содержание хлорофилла в них определяет зеленый цвет листьев. Подчеркивая выдающуюся роль хлорофилла в жизни растений, великий русский физиолог К.А. Тимирязев писал: «В сущности, что бы не производил сельский хозяин или лесовод – он прежде всего производит хлорофилл и уже через посредство хлорофилла получает зерно, волокно, древесину и т.д.». Накопление большего или меньшего количества пигмента служит для растений могучим средством приспособления для разнообразных условий освещения в природе.
Основная функция пигментов пластид заключается в поглощении и превращении солнечной энергии в химическую и запасание ее в форме органических соединений в процессе фотосинтеза.
Исследования по вопросу зависимости между продуктивностью растений и содержания пигментов ведутся на протяжении длительного времени. Любименко В.Н. (1910) отмечал прямую зависимость между количеством хлорофилла и энергией фотосинтеза. Дорохова (1959) и др., Мосин В.К. (1968) отмечают зависимость между содержанием хлорофилла и интенсивностью фотосинтеза при повышенных дозах минерального удобрения и отсутствия засухи. В целом следует отметить, что высокие концентрации и общее количество хлорофилла являются одним из основных факторов повышенной биологической активности организма.
Установлено, что синтез простейших первичных продуктов фотосинтеза приводит к образованию углеводов и белков, следовательно, то или иное количество хлорофилла, динамика его накопления может оказывать влияние на формирование урожая. Поэтому в своей работе мы проводили определение накопления хлорофилла в растениях озимой пшеницы по фазам вегетации при рекомендуемой в нашей зоне норме высева и различных технологиях возделывания.
Рис. 3. Влияние технологии возделывания на накопление хлорофилла
На основании анализа проведенных исследований можно сделать вывод, что накопление хлорофилла в значительной степени зависело от технологий возделывания озимой пшеницы сорта Московская 70. В среднем за два года наибольшее его содержание было при внесении (NPK)80 + N45 (весной), навоза (последействие) и применении пестицидов. В зависимости от фазы вегетации оно колебалось от 9,5 до 95,0 кг/га. На биологической технологии возделывания его количество значительно снижалось и составляло в зависимости от фазы вегетации от 1,8 до 35,5 кг/га. На всех изучаемых технологиях содержание хлорофилла было выше в фазу колошения, затем оно снижалось.
3.6. Зависимость урожайности озимой пшеницы от элементов
фотосинтетической деятельности посевов
В наибольшей корреляционной зависимости урожайность зерна озимой пшеницы находится от величины чистой продуктивности фотосинтеза (r = 0,73). Средняя корреляционная зависимость отличается от величины ассимиляционной площади листьев в фазы начала выхода в трубку (5), выхода последнего листа из влагалища (8), начала цветения (10.5.1) и молочной спелости зерна (11.1.) и от выхода зерна значения соответственно на 0,54; 0,30; 0,44; 0,35; 0,35; 0,36. также средняя корреляционная зависимость отличается от величины накопления сухого вещества в фазы начала кущения (2), начала колошения (10.2), начала цветения (10.5.1), молочной спелости зерна (11.1) значения соответственно (0,38; 0,66; 0,36; 0,31).
Слабая корреляционная зависимость урожайности зерна озимой пшеницы отмечена от величины ассимиляционной площади листьев (r = 0,16), величины накопления сухого вещества в фазы начала колошения (2), начала выхода в трубку (5) (r = 0,25), а также от величины фотосинтетического потенциала (r = 0,27).
Таблица 8
Зависимость урожайности озимой пшеницы от элементов фотосинтетической деятельности посевов
(1997-1999 гг.)
№ вариантов | Урожайность зерна, ц/га | Элементы (показатели) | Коэффициент корреляции | № |
1 | 44,9 | Площадь листьев в фазе 2, тыс. м2/га | 0,16 | 1 |
Накопление сухого вещества в фазе 2, ц/га | 0,38 | 2 | ||
2 | 47,0 | Площадь листьев в фазе 5 | 0,54 | 3 |
3 | 42,9 | Накопление сухого вещества в фазе 5 | 0,25 | 4 |
Площадь листьев в фазе 8 | 0,30 | 5 | ||
4 | 35,0 | Накопление сухого вещества 8 | 0,25 | 6 |
5 | 45,5 | Площадь листьев в фазе 10.2 | 0,44 | 7 |
6 | 45,8 | Накопление сухого вещества в фазе 10.2. | 0,66 | 8 |
7 | 45,5 | Площадь листьев в фазе 10.5.1 | 0,35 | 9 |
8 | 37,0 | Накопление сухого вещества 10.5.1 | 0,36 | 10 |
9 | 45,0 | Площадь листьев в фазе 11.1. | 0,35 | 11 |
Накопление сухого вещества 11.1. | 0,31 | 12 | ||
10 | 47,6 | Фотосинтетический потенциал | 0,27 | 13 |
11 | 46,2 | Чистая продуктивность фотосинтеза | 0,73 | 14 |
12 | 35,0 | Выход зерна, кг | 0,36 | 15 |
2,0-2,1 | ||||
НСР 0,95 ц/га | 2,5-2,8 |
глава 4. экономическая эффективность
Повышение эффективности сельскохозяйственного производства – основа современного экономического развития.
Экономическая эффективность характеризуется сопоставлением выхода продукции с размерами материально-денежных затрат, необходимых для получения этой продукции. Чем больше производится продукции с единицы земельной площади и чем меньше затрат на единицу продукции, эффективнее используется земля.
Для определения экономической эффективности производства озимой пшеницы при различных технологиях возделывания необходимо знать урожайность с 1 га, общие затраты на 1 га, себестоимость единицы продукции, чистый доход и рентабельность производства.
В общие затраты входят производственные затраты и коммерческие издержки.
Производственные затраты состоят из заработной платы работникам, затрат на семена, удобрения, средства защиты, работы и услуги, на содержание основных средств, прочие прямые затраты, затраты по организации производства и управлению. Расчет производственных затрат осуществлен в технологической карте.
Производственные затраты в биологическом варианте составили 110066 руб., а в варианте с интенсивным применением средств химизации – 282799,6 руб., что на 152933,4 руб. больше по сравнению с контролем. Такое резкое увеличение производственных затрат связано с дополнительными затратами на удобрения (111688 руб., на средства защиты растений (14320 руб.), на работы и услуги (2710 руб.), на содержание основных средств (20031 руб.).
Товарная продукция сельского хозяйства требует дополнительных затрат на ее реализацию, на изучение спроса и предложений, рекламу и т.д. В противном случае произведенная продукция не будет реализована в необходимом объеме по сопоставимым ценам и хозяйство понесет убытки.
Таблица 9
Размер и структура производственных затрат на 100 га на производство озимой пшеницы
Наименование показателей | Контроль | Вариант | Отклонения от контроля ± | |||
Руб. | % | Руб. | % | Руб. | % | |
1. Заработная плата | 3473,8 | 3,2 | 4927,6 | 1,7 | +1453,8 | 0,9 |
2. Семена и посадочный материал | 56000 | 50,8 | 56000 | 19,8 | - | - |
3. Удобрения | - | - | 111688 | 39,5 | +111688 | 73 |
4. Средства защиты растений | - | - | 14320 | 5 | +14320 | 9,4 |
5. Работы и услуги | 10152,2 | 9,2 | 12862,4 | 4,5 | +2710 | 1,8 |
6. Затраты на содержание основных средств | 32088 | 29,2 | 52119 | 18,5 | +20031 | 0,2 |
7.Прочие прямые | 1300 | 1,2 | 1300 | 0,5 | - | - |
8. Затраты по организации производства и управлению | 7052 | 6,4 | 29582,6 | 10,5 | +22530,6 | 14,7 |
Всего | 110066 | 100 | 282799,6 | 100 | 152933,4 | 100 |
Таблица 10
Расчет коммерческих издержек
Виды издержек | Контроль | Вариант | Отклонения от контроля ± |
1. Реклама | 60 | 60 | - |
2. Тара | 35000 | 44900 | 9900 |
3. Сертификация продукции250 | 250 | 250 | - |
4. Информационно-поисковые затраты | 200 | 200 | - |
5. Затраты на погрузку, разгрузку | 400 | 500 | 100 |
6. Транспортные издержки | 300 | 400 | 100 |
7. Расходы на маркетинговые исследования | 300 | 300 | - |
Итого | 36510 | 46610 | 10100 |
При расчете коммерческой себестоимости учитывали не общую урожайность, а количество стандартной продукции. В химическом варианте количество стандартной продукции составило 4260 ц, а в биологическом – 3320 ц.
Коммерческая себестоимость основной продукции в варианте с использованием минеральных удобрений и средств защиты составила 69,6, а в биологическом варианте – 39,7 руб. Это на 29,9 руб. меньше, чем в химическом варианте.
Таблица 11
Калькуляция производственной и коммерческой себестоимости единицы продукции
Наименование показателей | Контроль | Вариант | Отклонения ± |
1. Урожай основной продукции, ц/га | 35 | 44,9 | 9,9 |
2. Урожай побочной продукции, ц/га | 35 | 44,9 | 9,9 |
3. Всего производственных затрат, руб., в т.ч. | 110066 | 282799,6 | 152933,4 |
Затраты на основную продукцию | 99059,4 | 254519,6 | 155460,2 |
Затраты на побочную продукцию | 11066,6 | 28279,9 | 17273,3 |
4. Производственная себестоимость 1 ц продукции, руб. | |||
Основной | 28,3 | 56,7 | 28,4 |
побочной | 3,1 | 6,3 | 3,2 |
5. Коммерческие издержки | 36510 | 46610 | 10100 |
6. Коммерческая себестоимость | |||
Основной продукции, руб. за 1 ц | 39,7 | 69,6 | +29,9 |
Побочной продукции, руб. за 1 ц | 4,2 | 7,3 | 3,1 |
Управление отраслью растениеводства требует не только соответствующей компетенции, но и наличия соответствующих экономических рычагов управления.
Таблица 12
Расчет фонда заработной платы и фондов стимулирования труда при возделывании озимой пшеницы
Наименование показателей | Контроль | Вариант | Отклонения от контроля ± |
1. Тарифный фонд оплаты труда на весь объем работы | 1107,9 | 1596,5 | 488,6 |
2. Доплаты: | |||
За продукцию | 332,4 | 479 | 146,6 |
За качество и срок | 302,5 | 312,7 | 10,2 |
За классность | 137 | 164,4 | 27,4 |
3. Повышенная оплата на уборке | 216 | 216 | 0 |
4. Оплата отпусков | 180,2 | 214,4 | 34,2 |
5. Доплаты за стаж | 350,4 | 426,1 | 75,7 |
Всего оплата труда с начислениями | 3442,3 | 4186,2 | 743,9 |
Стимулирование труда за выполнение производственных процессов в соответствии с технологией позволит увеличить объем производства, а агроному – эффективно управлять отраслью.
Тарифный фонд оплаты труда берется из технологической карты (прил.), доплаты за продукцию составляют 30% от тарифного фонда. По биологической технологии они составили 344 руб., а в химической – 513,5 руб. В технологической карте рассчитывается доплата за качество и срок и повышенная оплата на уборке. По сравнению с химическим вариантом оплата труда в биологическом варианте на 1453,8 руб. меньше.
Таблица 13
Расчет технологической трудоемкости
Наименование показателей | Контроль | Вариант | Отклонения |
1. Затраты труда на весь объем работ, чел.-час | 981,4 | 1463 | 481,6 |
2. Затраты труда, относимые на основную продукцию | 883,3 | 1316,7 | 433,4 |
3. Побочную продукцию | 98,1 | 146,3 | 48,2 |
4. Трудоемкость 1 ц основной продукции | 0,25 | 0,29 | 0,04 |
Снижение трудоемкости производства является очень важным фактором повышения эффективности производства и при выборе производственного направления хозяйства. Трудоемкость 1 ц основной продукции озимой пшеницы составила – в химическом варианте – 0,29, а в биологическом – 0,25.
Таблица 14
Экономическая эффективность производства при различных технологиях возделывания озимой пшеницы
Наименование показателей | Контроль | Вариант | Отклонения ± |
1. Урожай, ц/га | 35 | 44,9 | +9,9 |
2. Коммерческая себестоимость 1 ц продукции, руб. | 39,7 | 69,6 | +29,9 |
3. Общие затраты на 1 га, руб. | 1465,8 | 3294 | +1828,2 |
4. Цена реализации 1 ц, руб. | 120 | 100 | -20 |
5. Чистый доход с 1 га, руб. | 2734,2 | 1196 | -1538,2 |
6. Рентабельность, % | 186,5 | 36,3 | -150,2 |
Проведенные расчеты показали, что выше чистый доход был получен в технологии без применения средств химизации (2734,2 руб.), что на 1538,2 руб. больше, чем в химическом варианте. Уровень рентабельности также был выше при возделывании озимой пшеницы по биологической технологии и составил 186,5%.
Расчеты показателей экономической эффективности свидетельствуют о том, что с самой низкой себестоимостью получено зерно озимой пшеницы в варианте без использования средств защиты.
Коммерческая оценка по экономическим показателям дает основание считать биологическую технологию более перспективной для освоения в хозяйствах, достигших достаточно высокого уровня культуры земледелия и имеющих благоприятное финансовое положение
глава 5. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ
Разработка методов и средств, предотвращающих или снижающих нежелательное действие пестицидов на культурные растения осуществляется благодаря совершенствованию технологий применения пестицидов, улучшения их препаративных форм, целенаправленному синтезу новых, более селективных препаратов, использованию специальных химических соединений, обладающих защитными свойствами в отношении культурных растений, а также возделыванию устойчивых к тем или иным гербицидам сортов, селекции культур на чувствительность к гербицидам современного ассортимента.
В этом разделе в основном представлен материал по гербицидам. Прежде всего о роли некоторых аспектов технологии применения этих химических средств.
При разработке технологии использования гербицидов необходимо учитывать, что безопасность довсходовых препаратов зависит от слоя почвы, обеспечивающего отделение семян культурных растений от нанесенного на почву гербицида, то есть, она во многом определяется глубиной заделки семян при посеве. Так, безопасность рейсера для озимой пшеницы была достигнута при посеве семян на глубину не менее 2 см. Слой почвы под семенами должен быть хорошо подготовлен (без комков). При обработке вегетирующих растений большое значение имеют морфологические особенности: расположение листьев, защищенность точки роста, наличие воскового налета и т.д. Они оказывают влияние на селективность пестицидов. Устойчивость зерновых культур к гербицидам контактного действия снижается при выпадении осадков, росы; в случае заморозков или высокой температуры воздуха; при добавлении в рабочий раствор мочевины, смачивателя или растительного масла. По возможности рекомендуется вносить пестициды в низких дозах и в период наибольшей устойчивости зерновых культур. Для уменьшения повреждения гербицидами соседних посевов рекомендуется обработка посевов пестицидами в ночное время, т.к. в это время суток стоит безветренная погода. Для лучшего освещения используются галогеновые светильники. Также считают целесообразным вместо однократной обработки посевов сравнительно большими дозами гербицидов применять двух-трехкратное опрыскивание низкими дозами.
Одним из путей повышения безопасности для зерновых культур химического метода борьбы с сорняками является совершенствование технологии внесения гербицидов. Здесь речь идет о создании специальной аппаратуры, обеспечивающей селективность обработки. Избирательность препарата в данном случае может быть достигнута при помощи механических средств, позволяющих наносить гербицид на сорняки и одновременно ограничивающих его соприкосновение с культурными растениями. С этой целью применяют ряд опрыскивателей со специальными защитными щитками, рециркуляционные опрыскиватели, машины так называемого «фитильного» типа для контактного нанесения гербицидов на сорняки. Такие опрыскиватели на зерновых культурах применяются мало за исключением семеноводческих широкорядных посевов.
Тенденция создания препаратов с высокой избирательностью и повышенной токсичностью для сорных растений, а также безопасных к защищаемым культурам и окружающей среде четко проявляется при формировании современного сортимента пестицидов. При создании новых препаратов в среднем отбирают одно соединение на 10000 синтезируемых. В последние годы ассортимент пополнился рядом высокоселективных гербицидов. Среди них группа производных сульфонил – мочевины – глин, гранстар, хармони, ландокс и др., предназначенные для использования на посевах зерновых культур. Селективность этих препаратов объясняется различием в скорости их метаболизма в культурных и сорных растениях. Толерантность зерновых к глину, гранстару, хармони обусловлена быстрым разложением молекулы действующего вещества до неактивного соединения.
Большое значение для безопасности использования имеет совершенствование препаративных форм пестицидов. До недавнего времени пестициды выпускались в основном в виде смачивающихся порошков, концентратов эмульсий и гранул. В последнее время разработаны новые препаративные формы (текучая суспензия, сухая текучая суспензия или вододиспергируемые гранулы, микрокапсулы, микрогранулы и т.д.), более безопасные для зерновых культур, окружающей среды и обслуживающего персонала, более удобные в обращении и хранении, обладающие улученными физико-химическими и товарными качествами. Есть такие улучшенные формы гербицидов 2,4-Д (аминная соль), а также диалена.
Использование специальных соединений является одним из новых направлений нейтрализации токсичного действия пестицидов и, в особенности, гербицидов. Эти соединения включают адсорбенты, предовращающие контакт культуры с гербицидом (активированный уголь, глины, неорганические соли, ионообменные смолы, физиологически активные вещества гумусовой природы и т.д.) и антитоды – соединения, обезвреживающие попавшие в культурные растения гербициды и не влияющие на гербицидные свойства по отношению к сорнякам. К последним относится соединение протект, R – 25788, CGA – 92194, компец – II, АД – 67 и др.
Университетом в Гуэлфе (Канада) и лабораторией по метаболизму министерства сельского хозяйства США разработан метод устойчивости зерновых культур к гербицидам путем предварительной обработки ими же в дозах до 10% от рекомендуемой. При этом увеличивается уровень ферментов, участвующих в детоксикации гербицидов в тканях растений.
Выявление чувствительности разных сортов зерновых культур к гербицидам и обработка ими только посевов устойчивых сортов – один из путей повышения эффективности безопасного применения гербицидов. Исследования в этом направлении проводятся как при испытании отдельных препаратов, так и при разработке технологии их применения. Установлены большие различия в чувствительности к гербицидам сортов озимой пшеницы в Чехии (Midlilova, 1984), по сортам яровой пшеницы в Австрии, по сортам озимой пшеницы США.
Мировой опыт использования пестицидов свидетельствует о том, что остатки действующих веществ и продукты их метаболизма, циркулируя в окружающей среде, загрязняют почвенный покров, поверхностные и грунтовые воды. Некоторые из них сохраняют свою активность до 10-12 лет и опасны для живых организмов даже в незначительных количествах. В этой связи возникла проблема преодоления возможного отрицательного последействия вносимых препаратов. Стратегия решения этой проблемы основана на сокращении потока загрязняющих веществ в биосферу, обеспечении надежного контроля за содержанием остаточных количеств препаратов в объектах окружающей среды, а также на использование средств и методов, снижающих остаточное количество пестицидов в воде, почве и растениеводческой продукции. Разработку последних проводят на основе физических, химических и биотехнологических процессов.
В настоящее время усилия ученых направлены на поиск микроорганизмов, обладающих повышенной способностью разрушать пестициды. Установлено, что многие виды бактерий – представители родов Pseudomonas, Flavobacterium обладают способностью инактивировать пестицидные препараты различных химических классов до безопасных для человека и животных соединений. При этом высокие потенциальные возможности микроорганизмов относительно разложения персистентных пестицидов реализуются в незначительной степени из-за отсутствия необходимых условий, в т.ч. и агротехнических.
В США в Техасском университете установлена возможность разложения растительных остатков паратиона в почве с помощью бактерий Pseudomonas diminuta. Методами генной инженерии были получены высокоэффективные штаммы бактерий, вырабатывающих большое количество ферментов, гидролизующих молекулы этого пестицида. В лаборатории микробиологии и иммунологии Иллимойского университета при помощи также методов генной инженерии были получены штаммы бактерий Pseudomonas ceracia, которые могут использовать высокоперсистентный гербицид для зерновых 2,4,5 – Т в качестве источника питания. При этом 70% препарата разлагается в течение 7 дней.
В исследованиях, проведенных в ВНИИ сельскохозяйственной микробиологии, показана возможность использования штаммов грамположительных и грамотрицательных для ускорения разложения инсектицида гордоны в почвах различного типа и на листьях растений. В этом же институте получен сухой препарат микроорганизма Agrobacterum radiobacter, предназначенный для дезактивации фосфорорганических соединений на поверхности объектов окружающей среды.
Эффективность микробиологических методов детоксикации находится в решающей зависимости от агротехнического фона. Деградация пестицидов чистыми культурами микроорганизмов усиливается при внесении в почвенную среду дополнительных органических веществ: навоза, компостов, соломы, зеленого удобрения, производных ароматических углеводородов, углеводов, гуминовых соединений.
Краткий обзор методов по снижению отрицательных последствий использования пестицидов свидетельствует о том, что все они очень трудоемки, дорогостоящи, но тем не менее необходимы для применения даже в рамках ограниченного использования пестицидов. Наиболее эффективный путь – полный отказ от применения пестицидов.
ГЛАВА 6. БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ
Химические вещества, используемые для биологической защиты растений в большинстве ядовиты для человека. Проникая в организм в небольших количествах, они вызывают нарушение его жизнедеятельности которое в определенных условиях может перейти в отравление. Исход отравления зависит от свойства и количества яда, состояния организма. Яды проникают в организм человека различными путями. Наиболее частым и самым опасным является поступление через дыхательные пути. Действие ядов, поступающих в организм через дыхательные пути выражено сильнее, чем при всасывании через слизистую оболочку желудочно-кишечного тракта, так как при поступлении из легких в кровь яды минуют печеночный барьер. Яды могут проникать в организм в результате нарушения правил личной гигиены: при внесении пестицидов в рот, заглатывания пыли и паров. Более интенсивно поступают яды через поврежденные участки кожи, а также через слизистые оболочки лаз, полости рта, носоглотки. С кровью ядовитые вещества разносятся по организму, распределяясь в разных органах и тканях. Запрещается или ограничивается применение веществ более токсичных, способных к кумуляции даже эффективность их выше. В процессе использования пестицидов и осуществлении санитарного контроля за их применением особое внимание следует обращать на соблюдение рекомендованных норм расхода препарата. Важным условием безопасности работающих с пестицидами и окружающего населения является строгое соблюдение правил техники безопасности и личной гигиены. Лица, работающие с ядами, снабжаются противогазами, защитной одеждой и обувью, предохранительными очками и респираторами. Каждому человеку, занятому работой с ядохимикатами, выделяется специальное питание (по 0,5 л молока вдень) и мыло (400 г на месяц). Спецодежда должна быть у каждого работающего личная и строго подобранная по размеру.
Воздушная среда – необходимое условие существования жизни. Она играет важную роль в дыхании человека, оказывает решающее влияние на формирование условий труда на рабочих местах, особенно при полевых работах. Метеоусловия, относящиеся к какой либо ограниченной территории называют микроклиматом. Неблагоприятные сочетания параметров микроклимата может вызвать перенапряжение механизмов терморегуляции, перегрев или переохлаждение организма. При переохлаждении понижается температура тела, сужаются кровеносные сосуды, нарушается работа сердечно-сосудистой системы, возможны простудные заболевания. Тепловое состояние организма влияет на работоспособность человека. И перегрев, и переохлаждение вызывают быстрое утомление, снижают производительность труда (Беляков, 1990).
Повышенная влажность воздуха усиливает действие ядов за счет их растворения и задержки на коже, слизистых оболочках и образования кислотных и щелочных микрокапель, вызывающих раздражающее действие. Обеспечение требуемых параметров микроклимата и чистоты воздуха может быть достигнуто выполнением следующих мероприятий. Рациональное размещение сельскохозяйственных объектов. Для уменьшения переноса вредных веществ с одного сельскохозяйственного объекта на другой или в жилой сектор между ними предусматривает санитарно-защитные зоны, размер которых зависит от вредности и мощности производства. Территорию санитарно-защитных зон озеленяют.
Механизация и автоматизация производственных процессов не только исключает тяжелый напряженный ручной труд, повышают его производительность, но и улучшают условия труда работающих, уменьшают или полностью исключают действие на работающих опасных и вредных производственных факторов. Герметизация источников выделения вредных веществ. Очень часто рабочие зоны загрязняются вредными веществами через неплотности соединений оборудования, трубопроводов, кожухов, уплотнение которых позволяет оздоровить воздушную среду.
Рациональное отопление и вентиляция – эффективные средства оздоровления воздушной среды.
Устройство герметичных кабин в зонах с повышенным содержанием вредных веществ, из которых ведут управление рабочими процессами. Рациональное чередование режимов труда и отдыха приобретает особое значение для рабочих, занятых в неблагоприятных условиях труда. Для таких рабочих устраивают дополнительные перерывы, сокращают продолжительность рабочего дня (например, до 4-6 ч при работе с высокотоксичными веществами), устраивают комнаты или зоны с нормальным микроклиматом.
Организация питьевого водоснабжения. В горячих цехах, на участках, в полевых условиях при интенсивном солнечном и тепловом воздействии рабочих обеспечивают газированной подсоленной (0,5%) водой, а также витаминизированными напитками для поддержания водно-солевого и витаминного баланса организма.
Разработаны комбинированные напитки, содержащие соли калия, кальция, различные микроэлементы, способные увеличивать дегидратацию организма.
Безопасность труда
Пространство, в котором возможно воздействие на работающего опасного и вредного факторов, называется опасной зоной. Опасными являются зоны вокруг движущейся техники, подвижных деталей и механизмов, незащищенных проводов и частей оборудования, находящихся под напряжением, перемещаемого груза, разогретых деталей и т.п.
Большую угрозу для жизни рабочих представляют опасные зоны, где возможен захват и наматывание одежды, волос или конечностей работающих.
Не все опасные зоны могут быть полностью защищены. Неогражденными остаются многие рабочие органы машин – лемеха плугов, диски борон, лапы культиваторов, режущие аппараты косилок, а также факелы распыла пестицидов и т.д. Работая у таких зон, следует соблюдать повышенную осторожность.
Из общего травматизма в сельском хозяйстве на растениеводство приходится 35% несчастных случаев со смертельным исходом и 26% травм с временной потерей трудоспособности. При этом до 60% несчастных случаев в растениеводстве происходит при возделывании и уборке зерновых, зернобобовых и кормовых культур.
Большое количество несчастных случаев (приблизительно 32%) связано с наездом техники на людей. До 22% несчастных случаев со смертельным исходом связано с опрокидыванием тракторов, прицепов, комбайнов, другой сельскохозяйственной техники.
Многих травм удалось бы избежать, если бы все подвижные детали и механизмы были надежно закрыты кожухами. Типичные травмы, связанные с падением рабочих с высоты: из кузовов транспортных средств, тракторных прицепов и саней, при входе или выходе из кабины, со стогов, скирд, с подножек сеялок, рабочих площадок картофелеуборочных комбайнов и других машин, с крыш, лестниц, а также с рам и других конструкций комбайнов, стогометателей, погрузчиков, сельскохозяйственных орудий, не предназначенных для пребывания там людей.
Среди несчастных случаев распространены: придавливание ног спицей прицепа при сцепке (расцепке) сельскохозяйственных машин и орудий с трактором, засорение глаз технологическим продуктом, травмирование бортом кузова при его открытии или закрытии, заваливание зерном в бункерах-накопителях.
В особую группу по тяжести исхода выделяют травмы, нанесенные электрическим током. Электротравмы происходят при касании высокогаборитной техники линий электропередачи, повреждения изоляции электрифицированных машин, обслуживаемых человеком; недопустимом приближении к открытым токоведущим элементам и в других случаях. Для предупреждения несчастных случаев широко применяют различные технические средства обеспечения безопасности; защитные ограждения; тормозные, блокировочные, сигнализирующие устройства; автоматические сцепки, дистанционное управление (Беликов, 1990).
Важнейшие законодательные акты по охране труда закреплены в Конституции РФ. Важное место в системе нормативных документов занимают инструкции по охране труда, составляемые для работающих по отдельным профессиям или видам работ. Они подразделяются на типовые, разрабатываемые проектно-конструкторскими, технологическими и другими институтами и организациями, а также предприятиями по указания соответствующих министерств; инструкции для работающих, разрабатываемые на каждом предприятии руководителями цехов, участков, отделений и учитывающие, в отличие от типовых, специфику каждого отдельного предприятия и его подразделения (Беликов, 1990).
Профилактика пожаров при уборке и сушке
Созревающие зерновые культуры очень пожароопасны. Загорание хлебного массива чаще всего происходит от искр выпускаемых двигателем внутреннего сгорания уборочной техники, попадания соломы и половы на выпускные коллекторы, повышенного нагрева трущихся деталей и наматывания соломы на вращающиеся части. Поэтому технику тщательно готовят к уборке. Проверяют работу всех узлов и механизмов, оборудуют искрогасителями, устраняют подтекание топлива, смазки. Каждый зерноуборочный комбайн комплектуют двумя огнетушителями, двумя штыковыми лопатами, двумя швабрами, а тракторы и другие самоходные сельскохозяйственные машины – огнетушителями и штыковой лопатой.
До начала уборки руководитель хозяйства назначает лиц, ответственных за противопожарную уборочной техники, организацию противопожарного инструктажа механизаторов.
Пожар хлебного массива может возникнуть от неосторожного обращения людей с огнем, от техники, проезжающей по дорогам, прилегающим к хлебным массивам. Поэтому перед созреванием колосовых хлебные поля окашивают и опахивают на ширину не 4 м. Для локализации возможного пожара хлебные массивы в период восковой спелости перед уборкой разделяют на участки площадью, не превышающей дневной нормы выработки комбайнов, но не более 50 га. между участками делают прокосы шириной не менее 8 м, сразу же убирая скошенный хлеб. Посередине прокосов делают пропашку шириной не менее 4 м.
Временные полевые станы, зернотоки располагают не ближе 100 м от хлебных массивов, скирд. Площадки вокруг них опахивают полосой шириной не менее 4 м. Курить в зоне этих объектов разрешается только в специальных отведенных местах. Ремонт и стоянка уборочных машин допускается не ближе 30 м от хлебного поля. В период уборки урожая в непосредственной близости от убираемых массивов следует иметь наготове трактор с плугом на случай пожара (Беликов 1990).
К работе на оборудовании зерноочистительно-сушильных комплексов и зерносушилок допускаются лица, прошедшие обучение по программе пожарно-технического минимума и имеющие квалификационное удостоверение на право работы на всех агрегатах.
Пожарная опасность зерносушилок определяется горючестью зерна, наличием зерновой пыли, высокой температурой теплоносителя (70-110 °С), топливных газов (600-900 °С). Чтобы предупредить возникновение и распространение пожара, передвижные сушильные агрегаты устанавливают не ближе 10 м от складов зерна. Помещения огневых топок зерносушилок отделяют от смежных помещений глухими негорючими стенами и перекрытиями.
При эксплуатации сушилок периодически контролируют работу теплоносителя и температуру зерна. Слой зерна под сушильными коробами и жалюзями сушилок шахтного и жалюзийного типов должен быть не менее 0,4 м. Лица, обслуживающие сушилку, должны постоянно находится в здании и следить за ее работой. Ежегодно перед началом уборки урожая зерносушилки и зерносклады должны быть проверены специальной комиссией на предмет их пожарной безопасности (Беликов, 190).
Безопасность жизнедеятельности в чрезвычайных ситуациях
В целях ликвидаций последствий стихийных бедствий, аварий и катастроф в городах и районах создают постоянно действующие чрезвычайные комиссии. Усиленное решение задач повышения устойчивости работы объектов АПК требует заблаговременной оценки работы каждой отрасли производства. Принято расчеты по устойчивости вести по состоянию объекта на начало лета, независимо от реального времени проведения исследований. Исходными данными для проведения расчетов являются предлагаемая радиационная обстановка на объекте; возможные потери работников растениеводства; состояние техники и обеспеченность ее механизаторами; возможные потери и загрязненность урожая сельскохозяйственных культур, которые могут выйти из севооборота в результате заражения долгоживущими радиоизотопами выше допустимых величин. Основной показатель устойчивости работы растениеводства – уровень производства валовой продукции в натуре и стоимостном выражении по культуре. Оценить устойчивость работы растениеводства можно по формуле:
Основным показателем для оценки устойчивости является натуральная продукция, необходимая для удовлетворения потребностей армии и населения в продуктах питания. Остаточную валовую продукцию рассчитывают по формуле:
ОВП=ВП - (Пп - Пт)
выводы
На основании проведенных исследований можно констатировать:
1. Изучение фотосинтетической деятельности посевов озимой пшеницы показало, что при снижении уровня питания и норм высева уменьшаются показатели ассимиляционной площади листьев в фазу кущения и фотосинтетический потенциал посевов, то увеличивается чистая продуктивность фотосинтеза и выход зерна на 1000 единиц потенциала
2. Расчет корреляционной зависимости урожайности озимой пшеницы свидетельствует: наиболее сильно уровень ее зависит от величины чистой продуктивности (r = 0,73), средне – от накопления сухого вещества в фазе 10.2. (r = 0,66), площади листьев в фазе 5 (r = 0,54), площади листьев в фазе 10.2 (r = 0,44), выхода зерна и накопления сухого вещества в фазе 10.5.1 (r = 0,36).
3. между содержанием хлорофилла (а + b) в листьях озимой пшеницы и урожайностью отмечена сильная корреляция в фазе кущения (r = 0,85), выхода в трубку (r = 0,78) и колошения (r = 0,95).
литература
1. Банников А.Г. и др. Основы экологии и охраны окружающей среды. М.: Колос, 1999. - 304 с.
2. Банников А.Г. Охрана природы. М.: Агропромиздат, 1985. – 287 с.
3. Беляков Г.И. Охрана труда. М.: Агропромиздат, 1990. – 320 с.
4. Вавилов П.П. и др. Растениеводство. М.: Колос, 1977 – 519 с.
5. Груздев Л.Г. Совместное применение ретардантов, гербицидов и удобрений под зерновые // Химия в с.-х.. т. XXIII. 1995. №1.
6. Губанов Я.В., Иванов Н.Н. Озимая пшеница. М.: Колос, 1983
7. Коданев И.М. Агротехника и качество зерна. М.: Колос, 1970 – 232 с.
8. Куперман Ф.М. Биологические основы культуры пшеницы. М.: изд-во МГУ, 1956.
9. Мальцев В.Ф. и др. Агроэкологические основы ресурсосберегающих технологий возделывания сельскохозяйственных культур в Брянской области. Брянск, изд-во БГСХА, 1999. – 165 с.
10. Мальцев В.Ф. Новые подходы для разработки технологий возделывания сельскохозяйственных культур // Вестник с.-х. науки. 1991. №8. С. 25-29.
11. Николаев М.Е. Густота посева – основа программирования урожая // Зерновое хозяйство. 1976. №2.
12. Панников В.Д. Почвы, удобрения и урожай. М.: Колос, 1964 – 150 с.
13. Петр И. Формирование урожая основных сельскохозяйственных культур. М.: Колос, 1984.
14. Пруцков Ф.М. Озимая пшеница. М.: Колос, 1976. – 344 с.
15. Саранин К.И. Агротехника. Пшеница в Нечерноземье. Л.: Колос, 1983
16. Саранин К.И. Озимая пшеница. М.: Колос, 1973
17. Сдобников С.С. Теоретические основы обработки почвы. Л.: Гидрометиздат, 1969. – 185 с.
18. Слижевская И.А., Ториков В.Е. Влияние различных приемов основной обработки почвы на засоренность и урожай озимой пшеницы при интенсивном возделывании // Научные основы интенсивных технологий возделывания с.-х. культур в юго-западной части Нечерноземной зоны РСФСР. Сб. науч. тр. БСХИ. Белгород, 1991.
19. Стихин М.Ф., Денисов П.В. Озимая рожь и пшеница в Нечерноземной полосе. Л.: Колос, 1977.
20. Ториков В.Е. Альтернативная технология возделывания зерновых культур на серых лесны почвах Брянской области // Научно-практические основы экологически чистых систем земледелия в юго-западной части Нечерноземной зоны РФ. Сб. науч. тр. Белгород, 1992
21. Ториков В.Е. Интенсивная технология возделывания озимой пшеницы в Нечерноземной зоне. Белгород, 1992. – 34 с.
22. Ториков В.Е. Нормы и сроки посева зерновых // Зерновые культуры. 1993. №1. С. 26-28
23. Ториков В.Е. Озимая пшеница. Брянск, 1995. – 150 с.
24. Ториков В.Е., Зверев В.А. Нужны ли пары под озимые зерновые культуры на Брянщине? // Зерновые культуры. 1994. №4. С. 23-24
25. Ториков В.Е., Островерхова А.В. Урожайность озимой пшеницы и агрофизические свойства почвы в зависимости от способов ее обработки и удобрений // Зерновые культуры. 1994. №4. С. 17-18
26. Ториков В.Е., Парачев В.П. Урожайность и качество зерна на Брянщине // Зерновые культуры. 1993. №4. С. 15-17
27. Фоптин И. Норма высева и регулирование стеблестоя зерновых культур // Международный сельскохозяйственный журнал. 1978. №3.
28. Ягодин Б.А. Агрохимия. М.: Агропромиздат, 1989. – 639 с.
29. Яковлев Н.Н. Климат и зимостойкость озимой пшеницы. Л.: Гидрометеоиздат, 1966.
ПРИЛОЖЕНИЯ |
Приложение 1
Метеорологические условия в годы проведения исследований
Показатели | Годы | Месяцы | За весь год | |||||||||||
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | |||
Сумма осадков, мм | 1997 | 27,1 | 31,8 | 36,8 | 36 | 62,4 | 61,9 | 110,7 | 12,8 | 62,6 | 109,4 | 51,9 | 33,1 | 636,5 |
1998 | 52,5 | 30,5 | 58,8 | 100 | 50,7 | 51 | 125,5 | 132 | 77,5 | 97,9 | 70,1 | 42,7 | 889,2 | |
1999 | 21,9 | 37,3 | 42,9 | 18,7 | 67,4 | 14,8 | 348,5 | - | - | - | - | - | - | |
Среднее многолет. | 32 | 32 | 31 | 33 | 55 | 65 | 82 | 64 | 46 | 45 | 37 | 38 | 560 | |
Температура воздуха, ОС | 1997 | -7,3 | -4,1 | -1,7 | 4,4 | 12,9 | 17,7 | 18,3 | 17,7 | 9,2 | 4,9 | 1,6 | -7,2 | +5,5 |
1998 | -3,8 | -4,3 | -1,3 | 5,8 | 13,5 | 19,2 | 18,3 | 15,7 | 11,9 | 5,7 | -7,8 | -7,7 | +5,4 | |
1999 | -4,0 | -5,2 | -0,6 | 10,4 | 10,0 | 21,4 | 21,7 | - | - | - | - | - | - | |
Среднее многолет. | -8,5 | -8,3 | -3,7 | 5,2 | 14,2 | 16,6 | 18,4 | 17,1 | 11,4 | 5,0 | -0,9 | -5,9 | +5,1 |
Приложение 17
Влияние технологий возделывания озимой пшеницы на накопление хлорофилла, кг/га (1998 г.). Норма высева 5,0 млн.
Варианты технологии | Содержание хлорофилла (а + b) в растениях по фазам вегетации | ||||
Кущение | Выход в трубку | Колошение | Налив зерна | Начало восковой спелости | |
(NPK)120+N45+МЭ+ЗУ+С+П | 9 | 43 | 69 | 51 | 35 |
(NPK)80+N45+МЭ+Н+П | 10 | 68 | 96 | 56 | 39 |
N45+Н+ЗУ+С+Пу | 11,3 | 49 | 79 | 41,2 | 25,6 |
Н+ЗУ+С | 2 | 17 | 32 | 27 | 24 |
Приложение 18
Влияние технологий возделывания озимой пшеницы на накопление хлорофилла, кг/га (1999 г.). Норма высева 5,0 млн.
Варианты технологии | Содержание хлорофилла (а + b) в растениях по фазам вегетации | ||||
Кущение | Выход в трубку | Колошение | Налив зерна | Начало восковой спелости | |
(NPK)120+N45+МЭ+ЗУ+С+П | 10 | 45 | 74 | 50 | 31 |
(NPK)80+N45+МЭ+Н+П | 9 | 79 | 94 | 54 | 35 |
N45+Н+ЗУ+С+Пу | 12 | 52 | 83 | 38 | 23 |
Н+ЗУ+С | 1,5 | 18,5 | 34,6 | 26,3 | 22 |
... биологических средств, агротехнических приемов и других нехимических средств, методов борьбы с вредителями и болезнями сельскохозяйственных культур (22). ВЫВОДЫ 1. В центральной зоне Краснодарского края применение органической системы удобрений под сою позволяет улучшить структуру староорошаемого выщелоченного чернозема. Агрономически ценных почвенных агрегатов на этом варианте увеличилось в ...
... . Среди них главенствующая роль принадлежит набору и соотношению компонентов травостоя и срокам их уборки. В результате наших исследований выявлены следующие закономерности при формировании продуктивности однолетних бобово-злаковых агроценозов: влияние набора, соотношения компонентов и сроков уборки на урожайность зеленой массы, химический состав и питательную ценность травостоя. Увеличение доли ...
0 комментариев