1.          Выявления наличия связи между факторами и ее тесноты;

2.          Определение формы связи и ее количественные характеристики.

Для анализа выбираются факторы, существенно влияющие на результат.

Количественную оценку влияния различных факторов на продуктивность проводится методом множественной корреляции, которая является продолжением статистических группировок. Для этого взяты статистические данные по 25 хозяйствам Ачинской зоны.

Для выявления взаимосвязи необходимо построить матрицу, затем ее проанализировать. Признаки, выступающие в качестве фактора, обуславливающих изменение других признаков, называются факторами. В данном случае взяты такие факторы как:

х1 - выход приплода на 100 маток, головы;

х2 - расход кормов на 1 голову, ц;

х3 - эффективность использования кормов.

Результативные обозначения - у, в данном случае у - молочная продуктивность коров.

После обработки данных на ЭВМ были получены следующие результаты:

Коэффициент множественной корреляции (R) характеризует тесноту связи одновременно нескольких факторов на изменение результативного признака. Он изменяется от 0 до 1. Если R < 0,3 связь очень слабая или отсутствует совсем.; R до 0,5 связь слабая; R = 0,5 - 0,7 - умеренная; R = 0,7 - 0,9 - тесная; R > 0.9 - сильная. В данном случае R = 1 - это значит, что теснота связи между признакам и факторами сильная.

Коэффициент множественной детерминации (R2) характеризует величину вариации результативного признака, которая объясняется факторами, входящими в модель. R2 = 1. Это значит, что на 100% продуктивность коров обусловлена факторами, включенными в модель и так же можно сказать что все факторы были учтены.

Частные коэффициенты детерминации или коэффициенты отдельного определения характеризуют степень влияния (в%) одного из факторов на результативный признак при условии, что остальные переменные закреплены на постоянном уровне:

d1 = 0.0577 степень влияния на х1 = 5,77%;

d2 = 0,4832 степень влияния на х2 = 48,32%;

d3 = 0,3618 степень влияния на х3 = 36,18%.

Частные коэффициенты детерминациипоказали, что х1 влияет на продуктивность на 5,77%, х2 - на 48,32%, х3 - на 36,18%

Построим уравнение чистой регрессии:

у = а01 х1 + а2 х2 + .... +аn хn,

где у - теоретическое значение зависимого признака,

а0 - свободный член, экономического смысла не имеет,

а1, а2, .... аn- параметры уравнения регрессии,

х1, х2, .... хn- значение фактора аргумента.

Коэффициенты регрессии позволяют измерить среднее значение результативного признака на единицу изменения факторов при условии, что остальные факторы остаются постоянными, т.е. вариация их в данном случае исключается.

а0 - условное начало,

а1 = - 0,1211 коэффициент чистой регрессии.

При х1 свидетельствует о том, что при изменение выхода на 100 маток, продуктивность коров уменьшится на 12,11 кг, при условии, что другими факторы неизменны.

а2 = 12,2649 коэффициент чистой регрессии.

При х2 свидетельствует о том, что при увеличении расхода кормов на 1 голову на единицу, продуктивность коров увеличится на 12,2649 кг, при условии, что другие факторы неизменны.

а3 = 1,5955 коэффициент чистой регрессии.

При х3 свидетельствует о том, что при увеличении эффективности использования кормов на единицу, продуктивность коров увеличится на 159,55 кг, при условии, что другие факторы неизменны.

Коэффициенты эластичности показывают, на сколько процентов в среднем меняется результативный признак с изменением фактора на 1% при постоянном положении всех других на среднем уровне.

В данном случае Э1 = - 0,9594 - это значит, что с изменением выхода приплода на 100 маток на 1% значение продуктивности уменьшится на 0,9594%.

Э2 = 0,9686 - это значит, что с изменением расхода кормов на голову скота на 1% значение продуктивности увеличится на 0,9686%.

Э3 = 0,4808 - это значит, что с изменением эффективности использования кормов на 1% значение продуктивности увеличится на 0,4808%.

Коэффициент - В (бета) показывает, на сколько изменится результативный признак с изменением фактора на одно среднеквадратическое отклонение при постоянстве остальных факторов. То есть В - коэффициенты характеризуют факторы, в развитии которых скрыто наибольшие повышении продуктивности. В - коэффициенты располагаются в порядке возрастания:

В1 = - 0,1421;

В3 = 0,8465;

В2 = 0,8941.

Можно отметить, что самое сильное влияние на увеличение продуктивности имеет третий фактор (расход кормов на 1 голову)



Информация о работе «анализ численности, продуктивности ивыход продукции молочного стада коров»
Раздел: Ботаника и сельское хозяйство
Количество знаков с пробелами: 47762
Количество таблиц: 21
Количество изображений: 12

0 комментариев


Наверх