3. Природные каменные материалы
Природными каменными материалами называют материалы, полученные из горных пород путем механической обработки без изменения их основных свойств (дроблением, рассевом, раскалыванием, распиловкой, теской и др.).
По назначению природные каменные материалы делят на изделия для дорожного строительства, мостов, подземных и гидротехнических сооружений, архитектурно-строительные изделия и облицовочные плиты. Кроме того, горные породы широко используются как сырьевые материалы для изготовления многих строительных материалов: керамики, стекла, цемента, извести, гипса и др. В процессе производства этих материалов состав, строение и свойства исходных горных пород изменяются. Таким образом, горные породы являются главной минерально-сырьевой базой дорожно-строительных материалов.
Горными породами называют природные агрегаты минералов более или менее постоянного состава.
Минералы - это однородные по химическому составу и физическим свойствам природные тела. Горные породы, состоящие из одного минерала, называют мономинеральными (например, мрамор), из нескольких - полиминеральными (например, гранит).
Структура (строение) горной породы. Структура породы определяется размером и формой кристаллов (или зерен), их сочетанием и размещением между собой. Структура отражает условия образования горной породы. Различают такие виды структур: кристаллическую, пегматитовую, порфировую, стекловатую, зернистую. Породы одинакового минерального состава могут иметь разную структуру, а следовательно, различные свойства. Так, гранит, и кварцевый порфир обладают одинаковым минеральным составом, но разной структурой. Однородная мелкозернистая структура (размер зерен мельче 3 мм) служит признаком более высокой прочности и стойкости горной породы против выветривания, хорошей обрабатываемостью по сравнению с крупнозернистыми (размер зерен 5 ... 10 мм) и грубозернистыми (размер зерен больше ГО мм) разновидностями горных пород. Стекловатая структура не имеет явных кристаллических образований. Породы со скрытокристаллической структурой отличаются большой прочностью и погодоустойчивостью. Хорошо выраженная макропорфировая структура придает породе красивый рисунок; породы с порфировой и порфировидной структурами по сравнению с равномерно кристаллическими разновидностями относительно менее стойки против выветривания.
Текстура (сложение) горной породы. Текстура характеризует относительное расположение и распределение породообразующих минералов, пор и микротрещин в породе. Текстура может быть плотная, полосчатая, сланцеватая, пористая, ячеистая. Породы с плотной текстурой более прочны, устойчивы, теплопроводны, они лучше полируются, чем пористые разновидности. С увеличением пористости (ноздреватости) понижается прочность и стойкость горной породы против выветривания. Сланцеватые породы анизотропны, они сравнительно менее погодоустойчивы, а при ударах раскалываются по направлению сланцеватости.
В процессе формирования горных пород в результате неравномерного охлаждения массивы пронизываются трещинами, которые в процессе выветривания увеличиваются. В результате массивы разбиваются на отдельности определенной величины и формы. Различают пластовые, или плитняковые, кубовидные, столбчатые, шаровые отдельности. Трещиноватость массивов облегчает добычу и обработку пород, но в то же время ограничивает возможность их применения.
4. Низкообжиговый строительный гипс
Сырьё, свойства, применение. Гипсовыми вяжущими веществами называют материалы, состоящие из полуводного гипса или ангидрита и получаемые обычно тепловой обработкой природного двуводного гипса и помолом продукта обжига. Гипсовые вяжущие вещества в зависимости от температуры тепловой обработки гипсового сырья разделяют на две группы: низкообжиговые (собственно гипсовые) и высокообжиговые (ангидритовые).
Низкообжиговые гипсовые вяжущие являются быстротвердеющими и получают их при нагреве природного гипса (Са804х 0,5Н20) до температуры 11О ... 180°С, при этом происходит частичная дегидратация исходного сырья с образованием полуводного гипса (Са8О4 -0,5Н2 О).
К низкообжиговым гипсовым вяжущим относятся строительный, формовочный и высокопрочный гипс.
Строительным гипсом называют воздушное вяжущее вещество, состоящее из полуводного гипса (Са804 • 0,5Н20) -модификации, получаемое путем тепловой обработки природного гипсового камня при температуре 110 . . . 180°С и нормальном давлении с последующим или предшествующим этой обработке измельчением в тонкий порошок. В этих условиях кристаллизационная вода выделяется из двуводного гипса в основном в виде пара, что сопровождается образованием преимущественно -полугидрата в виде мелких кристаллов. Такой гипс обладает повышенной водопотребностью (60 ... 65 % воды), а следовательно, и меньшей прочностью. Двугидрат переходит в полугидрат по схеме Са804 2Н20 = Са8О4 0,5Н20+ + 1,5Н20 (с поглощением тепла). Производство строительного гипса из плотной гипсовой породы состоит из трех главных операций: дробления гипсового камня, помола и обжига. По основным способам производства строительный гипс можно разделить на следующие группы, характеризующиеся:
предварительной сушкой и измельчением сырья в порошок с последующей дегидратацией гипса - обжиг в гипсоварочных котлах.
совмещением операций сушки, помола и обжига двуводного гипса;
обжигом гипса в виде кусков различных размеров (в шахтных, вращающихся, камерных и других печах) и измельчением полугидрата в порошок после обжига.
При смешивании с водой строительный гипс превращается в гипсовое тесто, которое на воздухе очень быстро твердеет, расширяясь и нагреваясь при этом. Скорость схватывания гипса строительного — в течение нескольких минут, и расширение при твердении делают строительный гипс незаменимым материалом для изготовления в формах как архитектурных деталей (розетки, лепные украшения, карнизы), так и всевозможных моделей.
Технологические процессы производства гипса с обжигом его во вращающихся печах легко переводятся на автоматическое управление, при этом уменьшается расход энергии. Гипс из вращающихся печей отличается пониженной водопотребностью при получении теста нормальной густоты (48 ... 55 %) по сравнению с гипсом из варочных котлов (60 . . . 65 %) . Строительный гипс хранят обычно в круглых силосах.
Строительный гипс является быстросхвывающимся и быстротвердеющим вяжущим материалом. Скорость схватывания измеряется минутами в соответствии с ГОСТ 125 - 79. Строительный гипс применяют для производства гипсовой сухой штукатурки, перегородочных плит и панелей, элементов заполнения междуэтажных и чердачных перекрытий зданий, вентиляционных коробов и других изделий и деталей, используемых в конструкциях зданий и сооружений при относительной влажности воздуха не более 65 %. Гипсовые изделия обладают невысокой плотностью, негорючестью и рядом других ценных свойств.
Большие объемы гипса используются для изготовления штукатурных и кладочных растворов. Особенно перспективно использование сухой гипсовой штукатурки. ГЦПВ вследствие его повышенной водостойкости применяют для изготовления санитарно-технических кабин, ванных комнат, вентиляционных каналов. При использовании гипса строительного для изготовления растворов, к нему добавляют специальные замедлители схватывания, так как в противном случае раствор схватится и затвердеет раньше, чем его применят. Недостатком гипса строительного является потеря прочности при насыщении водой.
5. Опишите подробно процессы, происходящие при обжиге сырьевой смеси, для получения портландцементного клинкера
Процессы, происходящие при обжиге во вращающихся печах. Обжиг сырьевой смеси и получение клинкера сопровождается сложными физическими и физико-химическими процессами.. Шлам, попадая в печь, подвергается воздействию дымовых газов, в результате чего происходит испарение свободной воды. Подсушенный материал загустевает, образуя крупные комья, которые затем распадаются более мелкие гранулы (зона сушки). При последующем движений по длине печи материал попадает в зону подогрева с температурой от 200 до 700°С, где выгорают органические примеси и начинается дегидратация каолинита 2SiO2Х АL2О3-nН20 и других глинистых минералов с образованием каолинитового: ангидрита АL2 О3 -2SiO2 (600 . . . 700° С). Обе эти зоны занимают до 50 ... 55% длины печи.
В третьей зоне (кальцинирования) при интервале температур 700… 1100° происходят диссоциация карбонатов СаСОз и МgСО3 и разложение глинистого компонента на оксиды SiO2, АL203, Fе203. Уже при температурах 750 . . . 800°С начинаются реакции в твердом состоянии между составляющими материалами, интенсивность которых возрастает с повышением температуры до 1000 . . .1100°с1 (конец зоны кальцинирования).
В зоне кальцинирования образуются следующие минералы: = 2СаО-SiO2, СаО-АL2Оэ и 2СаО-Fе2О3. С повышением температуры от 1100 до 1300°С интенсивность образования силикатов, алюминатов и ферритов кальция возрастает, что сопровождается значительным выделением тепла. Короткий участок печи, где температура материала повышается на 150 ... 200°С, получил название экзотермической зоны. В зоне экзотермических реакций возрастает скорость образования 2СаО-SiO2, а также формируются ЗСаО-АL2O3 и 4СаО-АL203-Fе2Оз. В материале, кроме этих минералов, содержится некоторое количество свободного оксида кальция.
В зоне спекания (1300 . . . 1450°С) происходит частичное плавление сырьевой смеси, образуется расплав (жидкая фаза) в количестве 20 ... 30% объема обжигаемой смеси. В присутствии жидкой фазы создаются благоприятные условия для образования основного минерала портландцемента трехкальциевого силиката ЗСаО-SiO2 из 2СаО-SiO2 и СаО. Это соединение (С3S) мало растворимо в расплаве, поэтому выделяется из него в виде мелких кристаллов, в последующем увеличивающихся в размерах. Выделение из расплава СзS сопровождается понижением в нем концентрации С2S и СаО, что приводит к переходу в расплав новых порций этих веществ, оставшихся в твердом состоянии в общей массе материала. Это обусловливает дальнейший ход процесса образования в расплаве и выделения из него СзS до почти полного связывания СаО с С25.
После зоны спекания обжигаемый материал переходит в зону охлаждения, где температура понижается от 1300 до 1000° С.
По выходе из печи клинкер, состоящий из прочных камневидных окатанных гранул ("горошка") зеленовато-серого цвета, быстро охлаждается воздухом с температуры 1000 до 100 .. . 200°С в холодильниках (барабанных, рекуператорных, колосниковых). Быстрое охлаждение предотвращает образование крупных кристаллов с сохранением в клинкере некоторой доли (5 . . .15 %) стекловидной фазы. Это обеспечивает повышение активности и сульфатостойкости цемента. Клинкер выдерживается на складе 1 ... 2 недели с целью гашения части оставшейся свободной извести и ее карбонизации при контакте с воздухом. Образующийся в результате обжига сырьевой смеси клинкер содержит следующие минералы: алит ЗСаО-SiO2 (сокращенно С3S) 37 ... 60%; белит 2СаО-SiO2 (сокращенно С2S) 15 . . .37%; алюминат 2СаО-АL203 (сокращенно С3А) 5 ... 15 %; алюмоферрит 4СаО-АL2Оз-Fе2Оз (сокращенно С4АF) 10 ... 18 %. В клинкере может содержаться в небольшом количестве МgО (не более 5 %) и СаО (менее 1 %). Качество цементного клинкера характеризуют не только химическим и минеральным составом, но и численными значением модулей, выражающих соотношения между количествами главнейших оксидов, взятыми в процентах.
... долговечности может служить, например, срок службы дорожной конструкции до капитального ремонта без потери основных эксплуатационных качеств. Приведенные данные лишь отражают основные свойства дорожно-строительных материалов, без знания которых невозможно проектировать, строить и эксплуатировать автомобильные дороги. В особых случаях возникает необходимость уделять большое внимание и другим ...
... фрезы, асфальтоукладчики и т. п.). Для них необходимо планировать вывод из работы на весь зимний период, частично используя его для ремонта. 3. ПОСТРОЕНИЕ ГРАФИКОВ ОРГАНИЗАЦИИ ДОРОЖНОСТРОИТЕЛЬНЫХ РАБОТ ПОТОЧНЫМ МЕТОДОМ Поточную организацию строительства автомобильных дорог можно характеризовать линейным календарным графиком в плоской системе координат. На таких графиках в ...
... материалу антикоррозионных свойств — от 0,6 л/м.кв. Для твердого битума, данная характеристика измеряется в килограммах на м². Битум с давних времен является одним из наиболее востребованных строительных материалов. Благодаря своим широким свойствам битум находит широкое применение в дорожном строительстве, изготовлении кровельных материалов, строительстве фундаментов зданий и сооружений, а ...
... см3 (кг/м3); - истинная плотность материала, г/см3 (кг/м3). Пористость можно выразить и в процентах: От величины пористости и ее характера зависят важнейшие свойства материала: плотность, прочность, теплопроводность, долговечность и др. Пористость в материале характеризуется как открытыми, так и закрытыми порами. Открытые поры увеличивают водопоглощение и водопроницаемость материала и ...
0 комментариев