1. Вода - новый источник энергии
В настоящее время многие ученые считают водород наиболее перспективным энергоносителем будущей энергетики [3-6]. Основным и очень доступным его источником является вода. При его сжигании водорода образуется опять вода – совершенно безопасное вещество. Поэтому считается, что по экологической безопасности у водорода нет конкурентов. Однако реализация этой задачи сдерживается большими энергозатратами на получение водорода из воды. Если нефть, газ и уголь - это готовые энергоносители, а водород в чистом виде на Земле отсутствует. Для того, чтобы водородная энергетика состоялась, нужно, чтобы полученная энергия при сжигании водорода намного превышала затраченную энергию на его получение.
При помощи электроэнергии воду можно разложить на водород и кислород. Когда вода подвергается действию с частотой, совпадающей с ее своей молекулярной частотой методом применения системы, созданной Стэном Майерсом (США) и вторично созданной не так давно компанией Xogen Power, она (вода) разлагается на кислород и водород при минимальных издержек электроэнергии. Внедрение разных электролитов (добавок, увеличивающих электрическую проводимость воды) резко увеличивает эффективность пpoцecса. Наряду с этим, различные геометрические формы и текстуры поверхности благоприятно влияют на увеличение эффективности процесса разложения воды. Например, в 1957 году исследователем Фридманом (США) был патентован особый железный сплав, внедрение которого приводит к самопроизвольному разложению воды на водород и кислород. Это означает, что с помощью этого железного сплава может быть непрерывное получение водорода из воды. Рассмотрим работы разных авторов, посвященные к получению водорода из воды.
1.1 Холодный ядерный синтез
Теоретические и экспериментальные результаты исследований показывают, что наиболее вероятным источником дешевого водорода, получаемого из воды, может стать её плазменный электролиз. При обычном электролизе, американские ученые Понс и Флешман в 1989 году показали возможность получения дополнительной энергии. По их мнению, источником этой энергии является холодный ядерный синтез[7], зафиксированные ими при плазменном электролизе воды.
В [8] обнаружено излучение до 1000 нейтронов в 1 секунду при массовом захлопывании кавитационных пузырьков и выделении тепловой энергии в 20 раз больше чем затраченной на образование потока воды в трубе. Кавитация как резонанс частоты колебаний молекул жидкости с частотой колебаний пузырьков пара, их образованием и схлопыванием сопровождается разгоном звуковых и ударных волн, высокими параметрами на фронте волны и низкими за фронтом волны. Это приводит к распаду вещества (ФПВР) на элементарные частицы с выделением большого количества тепла. Автор работы [8] предполагает, что во время захлопывании пузырьков существует вероятность захвата протонами электронов и образует атом водорода(при температуре 10000 К). Как известно, атомы водорода существуют в интервале температур 5000-100000С, что вытекает возможность формирования плазмы с такой температурой при определенной плотности атомов водорода в единице объема. В таких условиях молекула воды должна разрушаться, и ядро атома водорода превратиться в нейтрон. Последний, далее присоединяется к другому атому водорода или кислорода другой молекулы воды образуя, дейтерий или тритий или более тяжелый изотоп кислорода. При этом выделяется внутриядерная энергия и осуществиться холодный ядерный синтез.
1.2 Плазменный электролиз воды
В [9] Ф.М.Канаревым установлено, что источником дополнительной энергии при обычном и плазменном электролизе воды является не синтез ядер, а синтез атомов и молекул водорода. В последующих работах он получил результаты, показывающие уменьшение затрат энергии на получение водорода при плазменном электролизе воды. Таким образом, для того чтобы водородная энергетика состоялось, нужно, чтобы полученная энергия при сжигании водорода намного превышала затраченную энергию на его получение. Известно, что в природе существует экономный процесс разложения молекул воды на водород и кислород. Например, при фотосинтезе атомы водорода отделяются от молекул воды, и используется в качестве соединительных звеньев при формировании органических молекул, а кислород уходит в атмосферу. По данным [9], в низкотемпературном электролизере процесс электролиза воды аналогичен тому, который идет при фотосинтезе.
1.3 Процесс индуцированного распада протона на основе плазмо-электрического процесса
Исследование и изучение распада протона, возможно, станет основой получения экологически чистой и дешевой энергии. Вышеприведенные экспериментально установленные данные указывает на то, что возможен процесс индуцированного распада протона. Согласно[10], если протону сообщить дополнительную энергию (107,74 МэВ), то он становится нестабильным и распадается на легкие частицы, имеющие очень малое время жизни, в результате чего происходит полное превращение в энергию. Расчеты показывают, что энергии одного протона достаточно для того, чтобы при распаде инициировать распад еще 8 протонов. При этих условиях возможна цепная реакция индуцированного распада протонов, которая поддерживается и развивается за счет деструктизации вещества. Такую реакцию можно реализовать в водной среде. Индуцированный распад протона, возможно, осуществить в водной среде на основе плазмоэлектрического процесса[4,9]. Согласно [4,9] при повышении напряжения между электродами до 60В в растворе работает ионная проводимость и происходит обычный процесс электролиза воды. При дальнейшем повышении напряжения увеличивается количество протонов, отделившихся от молекулы воды, и у катода формируется плазма. Сформировавшаяся плазма ограничивает контакт раствора с поверхностью катода. На границе «плазма-реактор» атомы водорода соединяются в молекулы. Таким образом, при плазмоэлектрическом процессе источником плазмы является атомарный водород. Синтез атома водорода – процесс соединения свободного протона со свободным электроном. Атомарный водород существует, как известно, при температуре 5000-100000С, то в зоне катода образуется плазма с такой температурой.
... диаметром 12 м и мощностью 400 кВт. 2 Состояние и перспективы развития альтернативной энергетики в России Доля традиционной топливной энергетики в мировом энергобалансе будет непрерывно сокращаться, а на смену придет нетрадиционная — альтернативная энергетика, основанная на использовании возобновляемых источников энергии. И от того, с какими темпами это произойдет в конкретной стране, зависит ...
... период многие страны приняли решение о полном или постепенном отказе от развития атомной энергетики. 1.3 Особенности альтернативной водородной энергетики Водородная энергетика включает следующие основные направления: Разработка эффективных методов и процессов крупномасштабного получения дешевого водорода из метана и сероводородсодержащего природного газа, а также на базе разложения воды; ...
... не означает, что запасы нефти безграничны, но очевидно, что у человечества есть ещё не одно сорокалетие, чтобы совершенствовать энергосберегательные технологии и вводить в оборот альтернативные источники энергии. Наиболее яркой особенностью размещения запасов нефти является и сверхконцентрация в одном сравнительно небольшом регионе – бассейне Персидского залива. Здесь, в арабских монархиях ...
... к ним вызван экологическими соображениями, с одной стороны, и ограниченностью традиционных земных ресурсов — с другой. Особое место среди альтернативных и возобновляемых источников энергии занимают фотоэлектрические преобразователи солнечной энергии, изучение которых превратилось в отдельное научное направление – фотовольтаику. Однако высокая стоимость солнечных элементов до недавнего времени ...
0 комментариев