1. Основные виды Альтернативной энергии

1.1 Геотермальная энергия (тепло земли)

Геотермальная энергия - в дословном переводе значит: земли тепловая энергия. Объём Земли составляет примерно 1085 млрд.куб.км и весь он, за исключением тонкого слоя земной коры , имеет очень высокую температуру.

Если учесть ещё и теплоемкость пород Земли, то станет ясно, что геотермальная теплота представляет собой, несомненно, самый крупный источник энергии, которым в настоящее время располагает человек. Причём это энергия в чистом виде, так как она уже существует как теплота, и поэтому для её получения не требуется сжигать топливо или создавать реакторы.

В некоторых районах природа доставляет геотермальную энергию к поверхности в виде пара или перегретой воды, вскипающей и переходящей в пар при выходе на поверхность. Природный пар можно непосредственно использовать для производства электроэнергии. Имеются также районы, где геотермальными водами из источников и скважин можно обогревать жилища и теплицы ( островное государство на севере Атлантического океана -Исландия; и наши Камчатка и Курилы).

Однако в целом, особенно с учётом величины глубинного тепла Земли, использование геотермальной энергии в мире крайне ограничено.

Для производства электроэнергии с помощью геотермального пара от этого пара отделяют твёрдые частицы, пропуская его через сепаратор и затем направляют его в турбину. "Стоимость топлива" такой электростанции определяется капитальными затратами на продуктивные скважины и систему сбора пара и является относительно невысокой. Стоимость самой электростанции при этом также невелика, так как последняя не имеет топки, котельной установки и дымовой трубы. В таком удобном естественном виде геотермальная энергия является экономически выгодным источником электрической энергии. К сожалению, на Земле редко встречаются поверхностные выходы природного пара или перегретых ( то есть, с температурой гораздо выше 100oС ) вод, вскипающих с образованием достаточного кол-ва пара.

Валовой мировой потенциал геотермальной энергии в земной коре на глубине до 10 км оценивается в 18 000 трлн. т усл. топлива, что в 1700 раз больше мировых геологических запасов органического топлива. В России ресурсы геотермальной энергии только в верхнем слое коры глубиной 3 км составляют 180 трлн. т усл. топлива. Использование только около 0,2 % этого потенциала могло бы покрыть потребности страны в энергии. Вопрос только в рациональном, рентабельном и экологически безопасном использовании этих ресурсов. Именно из-за того, что эти условия до сих пор не соблюдались при попытках создания в стране опытных установок по использованию геотермальной энергии, мы сегодня не можем индустриально освоить такие несметные запасы энергии.

Геотермальная энергия по времени использования — наиболее старый источник альтернативной энергии. В 1994 г. в мире работало 330 блоков таких станций и здесь доминировали США (168 блоков на «месторождениях» Гейзере в долине гейзеров, Империал Вэлли и др.). Второе место занимала. Италия, но в последние годы ее обогнали КНР и Мексика. Самая большая доля используемой геотермальной энергии приходится на страны Латинской Америки, но и она составляет немного более 1%.

В России перспективными в этом смысле районами являются Камчатка и Курильские острова. С 60-х годов на Камчатке успешно работает полностью автоматизированная Паужетская ГеоТЭС мощностью 11 МВт, на Курилах — станция на о. Кунашир. Такие станции могут быть конкурентоспособны лишь в районах с высокой отпускной ценой на электроэнергию, а на Камчатке и Курилах она очень высока в силу дальности перевозок топлива и отсутствия железных дорог.


1.2 Энергия солнца

Общее количество солнечной энергии, достигающее поверхности Земли в 6,7 раз больше мирового потенциала ресурсов органического топлива. Использование только 0,5 % этого запаса могло бы полностью покрыть мировую потребность в энергии на тысячелетия. На Сев. Технический потенциал солнечной энергии в России (2,3 млрд. т усл. топлива в год) приблизительно в 2 раза выше сегодняшнего потребления топлива.

Полное количество солнечной энергии, поступающей на поверхность Земли за неделю, превышает энергию всех мировых запасов нефти, газа, угля и урана. И в России наибольший теоретический потенциал, более 2000 млрд. тонн условного топлива (т.у.т.), имеет солнечная энергия . Несмотря на такой большой потенциал в новой энергетической программе России вклад возобновляемых источников энергии на 2005 г определен в очень малом объеме - 17-21 млн.т у.т. Существует широко распространенное мнение, что солнечная энергия является экзотической и ее практическое использование-дело отдаленного будущего (после 2020г). В данной работе я покажу, что это не так и что солнечная энергия является серьезной альтернативой традиционной энергетике уже в настоящее время.

Известно, что каждый год в мире потребляется столько нефти, сколько ее образуется в природных условиях за 2 млн.лет. Гигантские темпы потребления не возобновляемых энергоресурсов по относительно низкой цене, которые не отражают реальные совокупные затраты общества, по существу означают жизнь в займы, кредиты у будущих поколений, которым не будет доступна энергия по такой низкой цене. Энергосберегающие технологии для солнечного дома являются наиболее приемлемыми по экономической эффективности их использования. Их применение позволит снизить энергопотребление в домах до 60%. В качестве примера успешного применения этих технологий можно отметить проект "2000 солнечных крыш" в Германии. В США солнечные водонагреватели общей мощностью 1400 МВт установлены в 1,5 млн. домов.

При КПД солнечной электростанции (СЭС) 12% все современное потребление электроэнергии в России может быть получено от СЭС активной площадью около 4000 кв.м, что составляет 0.024% территории.

Наиболее практическое применение в мире получили гибридные солнечно-топливные электростанции с параметрами: КПД 13,9%, температура пара 371 гр.С , давление пара 100 бар, стоимость вырабатываемой электроэнергии 0,08-0,12 долл/кВт.ч, суммарная мощность в США 400 МВт при стоимости 3 долл/Вт. СЭС работает в пиковом режиме при отпускной цене за 1 кВт.ч электроэнергии в энергосистеме: с 8 до 12 час.-0,066 долл. и с 12 до 18 час.- 0,353 долл.. КПД СЭС может быть увеличен до 23% - среднего КПД системных электростанций, а стоимость электроэнергии снижена за счет комбинированной выработки электрической энергии и тепла.

Основным технологическим достижением этого проекта является создание Германской фирмой Flachglass Solartechnik GMBH технологии производства стеклянного параболоцилиндрического концентратора длиной 100 м с апертурой 5,76 м, оптическим КПД 81% и ресурсом работы 30 лет. При наличии такой технологии зеркал в России целесообразно массовое производство СЭС в южных районах, где имеются газопроводы или небольшие месторождения газа и прямая солнечная радиация превышает 50% от суммарной.

Принципиально новые типы солнечных концентратов, использующие технологию голографии, предложены ВИЭСХом.

Его главные характеристики - сочетание положительных качеств солнечных электростанций с центральным приемником модульного типа и возможность использования в качестве приемника как традиционных паронагревателей, так и солнечных элементов на основе кремния.

Одной из наиболее перспективных технологий солнечной энергетики является создание фотоэлектрических станций с солнечными элементами на основе кремния, которые преобразуют в электрическую энергию прямую и рассеянную составляющие солнечной радиации с КПД 12-15%. Лабораторные образцы имеют КПД 23%. Мировое производство солнечных элементов превышает 50 МВт в год и увеличивается ежегодно на 30%. Современный уровень производства солнечных элементов соответствует начальной фазе их использования для освещения, подъема воды, телекоммуникационных станций, питания бытовых приборов в отдельных районах и в транспортных средствах. Стоимость солнечных элементов составляет 2,5-3 долл/Вт при стоимости электроэнергии 0,25-0,56 долл/кВт.ч. Солнечные энергосистемы заменяют керосиновые лампы, свечи, сухие элементы и аккумуляторы, а при значительном удалении от энергосистемы и малой мощности нагрузки - дизельные электрогенераторы и линии электропередач.

 


Информация о работе «Альтернативные источники энергии и возможности их применения в России»
Раздел: Физика
Количество знаков с пробелами: 48401
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
29103
0
1

... считается одной из самых солнечных территорий в Европе. По оценкам специалистов, Португалия может получать около 39% от всей вырабатываемой в стране электроэнергии из возобновляемых источников. Перспективы применения альтернативных источников энергии в РФ В нашей стране проблема нехватки энергоносителей и электроэнергии пока остро не стоит. Но поскольку цены на нефть все растут, а запасы ее ...

Скачать
10580
0
0

... освоить такие несметные запасы энергии. Таким образом, альтернативные возобновляемые источники энергии позволяют долгосрочно обеспечить всю страну. Состояние освоения альтернативных источников энергии в мире и в России Состояние АПЭ в мире По прогнозу Мирового энергетического конгресса в 2020 году на долю альтернативных преобразователей энергии (АПЭ) придется 5,8 % общего ...

Скачать
44599
0
0

... горючий газ, известны также методы химической переработки растительной биомассы с получением жидких топлив и др. Растительная биомасса – один из наиболее распространённых и доступных возобновляемых источников энергии на Земле, возрастающий интерес к которому связан с экологическими факторами, вызывающими у человечества всё большее внимание. Ископаемые топлива наносят значительный вред окружающей ...

Скачать
67580
0
0

... , эту глобальную проблему можно разрешить с пользой для всех государств планеты, лишь объединив усилия всего мирового сообщества, на освоение альтернативных источников энергии. Необходимо объединить научные знания, финансовые ресурсы, передовые технологии, и это даст отличный результат. Но к несчастью, этого, скорее всего не произойдет. Поэтому решение глобальной проблемы, будет осуществляться на ...

0 комментариев


Наверх