Активность. Порядок реакций

11403
знака
0
таблиц
4
изображения

1.         Активность

 

Рассмотренные нами соотношения для идеальных растворов не могут быть непосредственно использованы для вычисления равновесия, в котором участвуют реальные растворы, в частности в реальных растворах не выполняется один из основных законов химии – з. действия масс. При подставлении в выражения для константы равновесия концентрации реагирующих веществ константа равновесия оказывается не постоянно зависящей от концентрации. В случае идеальных растворов из измерения одного из свойств (давление пара) можно рассчитать все другие свойства. Желательно сохранить такую возможность для реальных растворов. Решение было предложено Льюисом, который ввел в теорию растворов так называемые т/д активности в качаестве ф-ии, связывающей свойства равствора друг с другом и заменил концентрацию в реальных растворах. Подставляя т/д активность в место концентрации, в т/д уравнение, полученное для идеальных растворов делает последнее пригодным и для реальных растворов. Т.о. активностью называется величина, подставляя которую вместо концентрации в т/д уравнение делает последнее применимым для реальных растворов, а – активность. После введения активного хим. потенциала i определяется соотношением  Bb+dD↔Mm+rR. Константу равновесия определяет соотношение . З. распределения, если раствор 3-го вещества нельзя считать идеальным . Активность должна быть введена таким образом чтобы в идеальных растворах она совпадала с концентрацией, а в реальных растворах она должна характеризовать отклонение их от идеальных. По Льюису активность выражается соотношением давление пара данного компонента над реальным раствором к давлению пара этого компонента в некотором стандартном состоянии . Для растворимости в водных растворах для всех компонентов летучих жидких смесей. В начале стандартного состояния берут состояние компонентов в чистом виде и тогда при данной температуре  . В совершенном растворе соотношение  => в идеальном растворе активность = концентрации , в реальном растворе . Степень отклонения активности и концентрации определяется величиной коэффициента активности . В идеальном растворе , в реальном растворе может быть > и < 1. В разбавленных растворах для растворителя выполняется закона Рауля, а для растворов вещества з. Генри . Для растворённого вещества стандартное состояние должно быть сделано таким образом, чтобы в растворе любой концентрации соблюдался закон Генри ,  .

Связи м/у активностями компонентов

Уравнение Дюгема-Маргулиса:

 (1). Если раствор является близким к совершенному, то , а . , . Продифиринцируем ( и =const)  (2), (3). Подставим (4). Уравнение (4) может быть обобщено на раствор, содержащий несколько компонентов: . Если раствор близок к разбавленному  для растворённого вещ-ва . Повторяя действие, что и здесь справедливо уравнение (4). Для бинарного раствора уравнение (4) имеет вид: , , . Если известна зависимость активности второго компонента от концентрации, а так же активность первого компонента для какой либо концентрации, то можно активность компонента для другой концентрации. Зная , можно подсчитать .

Методы определения активности

1) Определение активности по давлению пара, если компонент летучий; например, раствор олово-цинк близок к совершенному. Давление пара при 957К , а давление пара над сплавом олово-цинк, в котором молярная доля цинка 0,226, составляет . По определению, , а для летучего компонента . Коэффициент активности

2) Определение активности на основе закона распределения. В реальных растворах коэффициент распределения рассчитывается по формуле: , где  и  - активности распределяющегося вещества 1-ой и 2-ой фазы. При бесконечном разбавлении, когда количество введенного 3-го компонента невелико, активности равны соответствующим концентрациям, определяя которые, вычисляют к. . Если константа распределения велика, то при увеличении общего количества введенного 3-го компонента 2-й раствор может оставаться идеальным вплоть до насыщения и тогда закон распределения может быть представлен в виде: . Определяя С2 и зная константу, рассчитывают а1 , а1=КС2 – активность 3-го компонента в 1-ом растворе.

Существуют и другие методы определения активности, например, криоскопические. Активность определяется по измеренному понижению температуры замерзания раствора по сравнению с чистым растворителем: . Активность можно определить из изучения химического равновесия, вычисляя Кр.

3) Активность можно вычислить из электрохимических измерений. Например, по формуле Нернста для металлического электрода в растворе своей соли: , где:  - стандартный электродный потенциал;  - потенциал электронов в растворе, измеряемый существующими методами. Зная  и  рассчитываем а.

Необратимые реакции

Для реакции первого порядка , где С – концентрация реагирующего исходного вещества. С другой стороны, .

;;; (2)

Из (2) следует, что константа скорости реакции первого порядка не зависит от способа выражения концентрации и имеет размерность :

 (3)

Из уравнения (3) следует, что график в координатах  будет прямой линией:

Уравнение (2) часто записывают в виде . Для характеристики скорости реакции часто пользуются величиной, называемой временем полупревращения (периодом полураспада), обозначаемой  - это время, в течение которого испытывает превращение половина взятого исходного вещества. Найдем выражение для .

В выражение (2) подставляем : ,

Для реакции 1-го порядка время полупревращения не зависит от начальной концентрации.

Часто в кинетические уравнения подобного вида вводят величину Х, которая характеризует количество вещества, вступившего в реакцию, тогда  и .

;   

Все превращения радиоактивных веществ протекают по первому порядку. Уравнениями первого порядка описываются некоторые другие физические процессы, например, самопроизвольное излучение электронов невозбужденных атомов и молекул. По первому порядку протекает реакция ацетона:

Необратимые реакции второго порядка

; ;;; (1)

 (2)  (3)

Из (3) следует, что в координатах  график будет прямой линией.

 

,

т.е. время полупревращения для реакции 2-го порядка обратно пропорционально начальной концентрации.

Рассмотрим более сложный случай:

Пусть Х – количество вещества А, вступившего в реакцию ко времени τ.

 

 

Реакциями 2-го порядка являются, например, реакции образования и разложения HI.

;

Омыление этилацетата щелочью и т.д.

Необратимые реакции третьего порядка

Такие реакции встречаются. В газовой фазе изучены пять таких реакций: взаимодействие оксида азота (II) с водородом, кислородом, хлором, бромом, йодом. Например: . В растворах известно большее количество таких реакций – окислительно-восстановительного характера. Рассмотрим простой случай, для которого  и , где С – концентрация исходного вещества.

;; (1)  (2)

Следовательно, константа скорости реакции третьего порядка имеет размерность . В зависимости от способа выражения концентрации выражение (1) можно переписать в виде: , следовательно, в координатах  мы будем иметь прямую линию:

Это используют для графического определения константы скорости.

Выражение дл времени полупревращения найдем подстановкой в уравнение (2) : , т.е. время полупревращения обратно пропорционально квадрату начальной скорости.

Р-ии дробного, нулевого

Для необратимой р-ии n–ого порядка для которой W=KCn. Для р-ии 2-го и 3-го порядка можно записать:  (1).

Выражения для времени полупревращения записывается  (2). Уравнение 1 можно записать в виде =>  . Дробный порядок р-ии указывает обычно на одновременное протекание нескольких этапов р-ии мало отличающихся друг от друга по скоростям ил на протекание обратимой р-ии. Часто дробный порядок имеют р-ии с участием атомов: CO+Cl2→COCl2.   Нулевой порядок р-ии имеет место при постоянной скорости р-ии, что возможно при поддержании постоянной концентрации исходных веществ. Нулевой порядок встречается среди гетерогенных р-ий. Если х - количество вещества вступившего в р-ию, то , , ,   .

Методы определения порядка хим р-ии

Методы делятся на дифференциальные и интегральные. Дифференциальные используют исходное диф. ур . Интегральные методы используют уравнения после интегрирования. Среди интегральных методов используются: 1) подстановки 2) графический 3) определение по времени полупревращения. 1) получение опытным путём данных по зависимости концентрации реагир. вещества от времени подстановки в ур. для константы скорости р-ии различного порядка. Порядок р-ии определяется уравнением-подстановкой, в которое экспериментальных данных даёт постоянное значение константы скорости р-ии 2) экспериментальные данные представляются в виде графиков. Если в координатах  получится прямая линия, то р-ия 1-го порядка. Р-ия будет иметь 2-ой порядок если прямая линия получится в координатах . Для р-ии 3-го порядка линия зависимости наблюдается в координатах . 3) р-ию проводят 2 раза с разложением начальных концентр. Каждый раз определяют время полупревращения. Если окажется, что время полупревращения не зависит от начальных концентраций, значит р-ия первого порядка, т.к. . Если во втором опыте начальная концентрация была увеличена в 2 раза, а время полупревращения уменьшилось в 2 раза, значит р-ия 2-го порядка, т.к. . Для р-ии 3-го порядка при том же самом условии время полупревращения уменьшится в 4 раза, т.к. . В общем случае если порядок , .

Если начальные концентрации , то , если , то . Поделив, получим . Логарифмируя, получим , . Это соотношение сохранится и в случае определения времени превращения любой доли концентрации . Прежде рассмотрим диф. метод Вант-Гоффа. В основе метода лежит Ур . пусть измеряемое, ,  - текущая концентрация исходного вещества в момент времени 1 и 2. . После логарифмирования , (1). Скорость р-ии при концентрации  и определяется из зависимости. ,  Часто получают не всю кривую , а производную определённой скорости при 2 концентрациях. Принимая, что ,тогда .  Для определения ΔС измеряем концентрации вещества в какой-то момент времени и через небольшой промежуток Δτ. Графический вариант метода Вант-Гофа W=KCn прологарифмируем  => является линейной функцией lgC. Определяя скорость при нескольких концентрациях, строят график lgW-lgC tgα=n. Скорость р-ии W в различный момент времени определяется как и в предыдущем случае, но тангенс угла наклона касательной к положительному направлению оси абсцисс. Определяемый таким образом порядок р-ии называется временным порядком, он учитывает влияние на порядок продолжительности р-ии. Если использовать несколько кинетических кривых, то получим истинный порядок р-ии. Время и концентрация порядка могут не совпадать. Метод изоляции. Получим выражение для константы скорости р-ии различных порядков и рассмотрим методы определения порядка р-ии применимые для тех случаев, когда кинетическое уравнение имеет вид . Пусть скорость хим. р-ии в зависимости от концентрации реагирующих веществ выражается Ур . n1, n2,.. – частные порядки р-ии или порядки р-ии соответствующие по 1-ому, 2-ому и 3-ему веществу. Сумма частных порядков определяет общий порядок р-ии. Чтобы определение частных порядков, а следовательно и общий поступают следующим образом: одно из веществ например 1-ое берут в нормальной концентрации, тогда как все остальные берут в большом избытке. Тогда концентрация этих веществ можно считать постоянными и зависимость скорости р-ии от концентрации выражается Ур . Одним из рассмотренных методов определён порядок р-ии по 1-ому веществу n1. Затем р-ию проводят снова, но в избытке берут все вещества, кроме 2-го и т.д.


Информация о работе «Активность. Порядок реакций»
Раздел: Химия
Количество знаков с пробелами: 11403
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
22800
0
7

... исходных веществ и образования продукта реакции. В общем виде выражение (5) запишется формулой:   (6) где vi - стехиометрические коэффициенты в уравнении реакции. Таким образом, скорость реакции равна скорости расходования (образования) данного вещества реакции, деленной на его стехиометрический коэффициент с учетом принятых знаков. Она всегда положительна. Скорость расходования исходных ...

Скачать
60978
3
1

... для следующего механизма реакции   НX + hv→Н· + X Н· + НХ→Н2 + Х Х + Х→Х2. Ответ: А.0,45·10-7 Эйнштейн·с-1 . Б. γ=1,95. В. γ = 2 Глава 3. Кинетика гетерогенных реакций   3.1 Примеры 3.1.1. Образец сплава металла А и В длиной 0,5 см и образец металла В длиной 0,5 см спаяны друг с другом. Определите время, за которое в результате диффузии А ...

Скачать
17001
9
6

... скорости реакции Ki для различных температур и порядок реакции "n". Для случая, когда С0 (A) = C0 (B) кинетическое уравнение в дифференциальной форме имеет вид: V = - dc / dτ = K * Cn, (6)   где V - скорость химической реакции; K - константа скорости; С - текущая концентрация. Интегрирование этого уравнения дает выражение: Kτ = (1/n-1) (1/Сn-1-1/С0n-1) (7)   Зная порядок ...

Скачать
77208
28
22

... а також температури на швидкість ацидолізу епіхлоргідрину. Для вирішення цих питань було проведено цілеспрямоване варіювання структури карбонової кислоти, структури та концентрації каталізатора, а також варіювання температури в досліджуваній реакції (1). Реакції ацидолізу епіхлоргідрину оцтовою кислотою та її похідними виконано в інтервалі температур 300 - 600С при концентрації каталізатору від ...

0 комментариев


Наверх