Содержание

Введение………………………………….…………………………………..……2

1. Трудности перевода «языка океана»……………………………………...…..4

2. Новое звучание океана……………………………………………………...….7

3. Методы и средства освещения подводной обстановки……………………...8

Заключение…………………………………………………...…………………..17

Список используемой литературы……………………………………………...19


Введение

В настоящее время наиболее актуальными являются исследования антропогенного и естественного воздействия на окружающую среду, климатообразования, возможностей прогнозирования природных катаклизмов. Мировой океан играет огромную роль в жизни всей биосферы планеты. Покрывая большую часть поверхности Земли, сложно устроенный и богато населенный живыми организмами, океан активно участвует в процессах функционирования живой оболочки планеты. Поэтому существует острая необходимость изучения и выявления закономерностей происходящих явлений для достижения глубокого понимания и возможности реализации эффективного контроля и воздействия в интересах страны и человечества в целом. Результаты исследований в значительной мере зависят от качества применяемых технических средств.

В связи с изменением геополитической и экономической ситуации в нашей стране изменилась концепция глобального мониторинга Мирового океана. На настоящий момент с учетом реальных возможностей нашей страны и ее национальных интересов, сформулирован ряд основных задач, которые изложены в ФЦП «Мировой океан». В ней предполагается совершенствование методологии проведения океанологических исследований в океане, предусматривающее переход от глобального к региональному мониторингу приоритетных районов Мирового океана и окраинных морей. Исходя из этого, исследование и мониторинг динамики и структуры вод Японского моря, на побережье которого сосредоточены крупные населенные пункты, промышленные и военные объекты России, Японии и Кореи, имеет огромное значение.

Современная тенденция проведения исследований предполагает снижение объемов морских экспедиционных рейсов и возрастание роли долговременных автономных буйковых станций; комплексное использование системы океанологического наблюдения, включающего судовые, авиационно-космические и автономные подводные станции и аппараты.

В настоящее время можно утверждать, что долговременный мониторинг с применением измерительных многофункциональных автоматизированных комплексов с большим сроком автономности становится основным средством изучения водной среды. Но следует отметить, что только массовое применение автономных средств позволит осуществить оперативный контроль и мониторинг акваторий океана.

Подобному применению автономных средств препятствует фактор, обусловленный высокими затратами на закупку, развертывание и последующую эксплуатацию аппаратуры, а также специфика условий эксплуатации автономной аппаратуры, обусловленная необходимостью длительного функционирования в тяжелых условиях. При этом отсутствие доступа к аппаратуре, практически полностью исключает возможность ее профилактического осмотра и последующего ремонта.

Необходимым условием массового применения автономных средств является низкая стоимость производства, транспортировки, развертывания и последующей эксплуатации средств автономного мониторинга, а также высокая надежность их долговременного функционирования в тяжелых эксплуатационных условиях. Ситуация, сложившаяся в данной области показывает, что затраты связанные с обозначенными выше особенностями при прочих равных условиях могут быть значительно снижены за счет существенного уменьшения массы и габаритов аппаратуры и ее энергопотребления, что может быть достигнуто благодаря использованию современной элементной базы, прогрессивных технологий, оригинальных конструктивных и схемотехнических решений. Поскольку основные характеристики в значительной мере зависят от применяемой элементной базы, необходимо отметить, что только за прошедшие десятилетия развития микроэлектроники произошло существенное улучшение таких характеристик технических средств, как вес, габариты, энергопотребление, производительность, надежность и стоимость.

Актуальность исследований. Одной из первоочередных и важнейших задач, стоящих в настоящее время перед специалистами подводной акустики, является приоритетное развитие материально-технической и методологической базы для дистанционных исследований и мониторинга океанологических процессов. Правильный выбор комплекса используемых методов и средств измерения для решения проблем технической океанологии, обеспечение научной и технической перспективы развития и эффективности его использования является одной из важнейших современных научно-технических проблем.


1. Трудности перевода «языка океана»

Человек издревле прислушивался к звукам, идущим из водных глубин. Правда, не всегда мог объяснить их происхождение. Так, в 1963 году, когда моряки советской атомной подводной лодки достигли Северного полюса, акустическая вахта субмарины уловила в недрах океана загадочный звук. Время от времени моряки слышали шум работающего двигателя. Объект с необычной "внеземной" ловкостью резко изменял скорость и направление. Подводники пришли в смятение. Позже источник сигнала был установлен - оказалось, что акустики уловили сердцебиение кита. Млекопитающее сопровождало лодку и создавало причудливый шумовой фон. Сердце царя океанов обладает мощностью в несколько десятков лошадиных сил и способно перекачивать до десяти тонн крови в сутки. Неудивительно, что оно шумело, словно мощный дизель.

В шестидесятые годы современная гидроакустика только зарождалась, и поэтому технические средства не позволяли правильно идентифицировать всю какофонию океанских звуков. Теперь же акватории бороздят научно-исследовательские суда, напичканные современным высокотехнологичным оборудованием, которые помогут ученым разобраться в океанском многоголосии.

Именно военные специалисты подтолкнули гражданских технарей к созданию проекта глобального акустического мониторинга Мирового океана. Стратегическую систему звукового контроля, состоявшую из цепочки подводных гидрофонов, впоследствии перенацелили для решения мирных задач. Этот проект работает на базе технической системы наблюдений американского ВМФ. Однако со временем она претерпела значительный «апгрейд». Специалисты Тихоокеанской морской экологической лаборатории национального Центра управления океанических и атмосферных исследований США научились контролировать отдаленные области Мирового океана, не покрытые сетью гидрофонов, расположенных на глубине нескольких сотен метров. Ученые усилили акустическую систему военных гидротелефонами, которые способны работать автономно и передавать данные на центральный пульт управления. Именно здесь исследователи получают окончательные данные в виде спектрограмм, другими словами, графических изображений сигналов. За годы работы у сотрудников лаборатории набралась целая «романтическая коллекция» всевозможных записей. Здесь есть песни китов, отголоски подводных землетрясений, шум винтов подводных лодок, звуки столкновения айсбергов и даже шорох растущих кораллов.

Однако на этом «апгрейд» не закончился. Следуя в ногу с прогрессом, океанологи дополнительно оборудовали свои плавающие лаборатории мощными активными системами гидроакустики, основанными на низкочастотном излучении. Так к процессу прослушивания океанских глубин добавилась еще одна методика - сканирование. Новое оборудование можно назвать идеальным инструментом для поиска подводных цивилизаций - эффективно и безопасно. «Дело в том, что оптические средства не позволяют заглянуть в глубины океана, - говорит кандидат физико-математических наук из Института прикладной физики РАН Александр Малеханов, принимавший участие в разработке системы, - даже в условиях идеально чистой воды видимость ограниченна. Электромагнитные волны тоже не проникают на большую глубину. Поэтому остается один-единственный способ безвредного изучения океана – гидроакустика». Схема простая: сигнал "А" выходит из передатчика высокой мощности, дальше отражается от точки "Б" и затем возвращается обратно и попадает в высокочувствительный приемник. Хитрый механизм обработки сигнала позволяет получить представление о рельефе дна и о нахождении практически любого объекта на территории в несколько сотен километров.



Информация о работе «Акустический мониторинг»
Раздел: Экология
Количество знаков с пробелами: 26891
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
20485
1
0

... тканей. Появление конъюнктивальных кислородных датчиков, которые могут неинвазивно определять артериальный рН, возможно, оживит интерес к этой методике.   3. Мониторинг анестезиологических газов   Показания Мониторинг анестезиологических газов обеспечивает ценную информацию при общей анестезии. Противопоказания Противопоказаний не существует, хотя высокая стоимость ограничивает проведение ...

Скачать
40451
2
8

... пиковых значений амплитуд импульсов АЭ связана линейной зависимостью с площадью трещины, при хрупком разрушении стали 38ХНЗМФА.   7. Практическая часть. Рис. 1. Поведение скорости счета АЭ при наводороживании титанового сплава ВТ1-0, плотность катодного тока 10 мА/см2; 1- дискриминация 6 dB, 2- дискриминация 8 dB. Рис. 2. Поведение скорости счета АЭ при наводороживании титанового ...

Скачать
42172
1
2

... -вещественный баланс), БПЭ (биологическая продуктивность экосистемы) и др. В каждой природной зоне рекомендуют иметь по одному полигону. Третья ступень (блок) мониторинга окружающей среды — биосферный мониторинг. В его задачи входят наблюдения, контроль и прогноз изменений в глобальном аспекте. Иначе говоря, биосферный мониторинг, дополняя биогеоэкологический, завершает систему «слежения» в ...

Скачать
72188
6
20

... является измерение сдвига частоты. То есть в качестве сенсорного эффекта в данном типе датчиков используется различие рабочих частот поверхностно-акустической волны прибора в различных средах. Некоторые задачи, решаемые ПАВ сенсорами В работе [6] авторами решена задача классификации ароматов и определения степени свежести пищевых продуктов по запаху с использованием аналитической микросхемы, ...

0 комментариев


Наверх