8. Электретные фильтры пока еще не нашли широкого применения в промышленности [3].
5.1 Система двухэтапной очистки газовых пылевых выбросов
Рис. 20. Схема пылеулавливающей установки
В настоящее время разрабатываются новые высокоэффективные и экономичные аппараты сухой сепарации с возможностью возврата уловленной пыли в технологический процесс. Одной из таких разработок является пылеулавливающая установка ДЕКО-2ПУ (рис. 20), предназначенная для очистки газовых (воздушных) потоков от промышленной пыли. Установка обладает низкой энергоемкостью и металлоемкостью, характеризуется максимальной надежностью, а технические характеристики остаются постоянными в течение всего периода эксплуатации. Таких результатов достигают за счет того, что входной патрубок подключен к пылевыпускному патрубку первого аппарата, в результате чего происходит высвобождение чистого воздуха из запыленного потока с целью создания оптимальной запыленности потока. Первый пылеулавливающий аппарат состоит из цилиндрического корпуса, тангенциального входного 2, выходного 3 и пылевыпускного 4 патрубков и конусообразной обечайки 5, расположенной концентрично внутри нижней конической части корпуса 1, в результате чего образуется кольцевой зазор. Входной патрубок 7 второго пылеулавливающего аппарата 6 подсоединен к пылевыпускному патрубку 4 первого пылеулавливающего аппарата, а выходной патрубок 8 – к входному патрубку 2 первого аппарата. Пылевыпускной патрубок 9 второго аппарата подсоединен к пыленакопительному бункеру 10 с патрубком 11 выгрузки пыли.
Между входным патрубком 8 второго пылеулавливающего аппарата 6 и входным патрубком 2 первого пылеулавливающего аппарата располагается основное тягодутьевое устройство 12 (вентилятор или дымосос).
Запыленный газовый поток поступает через тангенциальный входной патрубок 2 внутрь цилиндрического корпуса 1, где приобретает винтообразное движение и направляется в нижнюю часть корпуса. Под действием центробежных сил частицы пыли перемещаются к стенке корпуса. Пристеночный слой газового потока, имеющий максимальную концентрацию пыли, попадает в кольцевой зазор между конусообразной обесчаткой 5 и конической частью корпуса 1. Отсюда частицы пыли с частью газового потока удаляются через пылевыпускной патрубок 4. Далее запыленная часть газового потока из первого аппарата поступает во второйпылеулавливающий аппарат 6, где обеспыливается и направляется в газовый поток, перемещаемый тягодутьевым устройством. Выделенная из газового потока пыль собирается в пыленакопительном бункере.
Установка ДЕКО-2ПУ обеспечивает высокую степень сепарации пыли независимо от фракционного состава и массы, отличается простотой конструкции, малыми размерами, минимальными трудозатратами при обслуживании и опорожнении накопительных бункеров и высокой степенью очистки воздуха [6].
5.2 Пылеуловитель для мелкодисперсной пыли на основе центробежной и инерционной сепарацииСочетание центробежный и инерционных процессов, на основе которых работает пылеуловитель (рис. 21), позволяет значительно повысить степень улавливания мелкодисперсных частиц из газового потока за счет снижения вторичного уноса пыли.
Рис. 21. Конструкция пылеуловителя
Запыленный газ через входной патрубок 6 поступает в завихрительное устройство 2, в котором расположены определенного профиля лопатки 5, способствующие закручиванию газопылевого потока. Особое расположение входного патрубка обеспечивает сохранение высокой скорости газа (до 20 м/с) в верхней части аппарата в отличие от обычных циклонов.
Отделение частиц пыли в закрученном потоке происходит под действием центробежных сил в пространстве между корпусом 1 и экраном 8, установленным под завихрителем 2. Очищенный газ дважды изменив свое направление, поступает в патрубок вывода 7. Установка экрана соответствующей геометрии повышает эффективность пылеулавливания за счет лучшей аэродинамики потока в верхней части аппарата и снижает вторичный унос, предотвращая попадание отскочивших от корпуса частиц в поток очищенного газа. Отделившаяся пыль по стенке корпуса под действием силы тяжести поступает в нижнюю часть корпуса и собирается в бункер 9.
Проведенные испытания показали, что при использовании описанного выше пылеуловителя вторичный унос пыли по сравнению с существующей системой пылеочистки (циклон ЦН-15) снизился в 1,5 раза, а общая степень очистки составила 98,5 % [7].
Каждый из представленных в работе методов пылеочистки рассмотрен достаточно детально, выявлены его недостатки и достоинства, даны краткие технические характеристики и описаны основные виды аппаратов, применяемых в конкретном случае.
После анализа этих методов можно сделать вывод, что наиболее эффективным из них является очистка промышленных выбросов от пыли с использованием электрических пылеуловителей. Однако аппаратурное оформление этого метода требует больших капитальных затрат и наличия высококвалифицированного обслуживающего персонала.
В целом работа отвечает поставленной задаче – раскрытию и описанию применяемых методов пылеочистки.
1. Основы химической технологии / Под ред. проф. И.П. Мухленова. М.: Высшая школа, 1991, с. 218, с. 246 – 261.
2. Луканин В.Н., Трофименко Ю.В. Промышленно-транспортная экология. М.: Высшая школа, 2001. с. 54 – 55.
3. Лившиц М.Н. «Электронно-ионная очистка воздуха от пыли в промышленности строительных материалов». М.: Стройиздат, 1968. С. 7 – 38.
4. Коузов П.А., Малыгин А.Д., Скрябин Г.М. Очистка от пыли газов и воздуха в химической промышленности. Л.: Химия, 1982, с. 9-13, с. 34-83.
5. Кузнецов Д.А. Общая химическая технология. М.: Высшая школа, 1965. С. 64 – 89
6. Друцкий А.В., Смольский М.В.. Система двухэтапной очистки газовых пылевых выбросов. / Экология и промышленность России, № 3, 2003 г., с. 12-13.
7. Н.И. Володин, А.Н. Панков, А.В. Чудновцев, О.М. Пискунов. Очистка газовых потоков от мелкодисперсной пыли. / Экология и промышленность России, № 9, 2001 г., с. 20-22.
... концентрация пыли в выбросах цеха снизится и будет находится в пределах показателя ПДВ или будет превышать его незначительно. 6.3 Описание технологической схемы очистки выбросов цеха литья пластмасс В цехе литья пластмасс основными источниками загрязнения атмосферного воздуха являются термопластавтоматы в количестве 12 штук и сушильные шкафы, в которых ведется подготовка материала к ...
... волокно цемент, оливин, апатит, фостерит 1 2 4 6 1 6 2 6 4 6 6 3 4 4 4 4 3 4 4 4 4 4 1.4 Основные направления и перспективы борьбы с загрязнением атмосферы предприятиями строительной индустрии Дальнейшее сокращение вредных выбросов предприятиями строительной индустрии может быть достигнуто в результате создания и внедрения технологических процессов и ...
... (пл. Баляева) - 34,5 ПДК. Более низкие величины регистрируются в районе ул. Снеговой (ПНЗА №11)-10,2 ПДК, Океанского проспекта (ПНЗА № 2) - 12,0 ПДК и ул. Постышева (ПНЗА № 3) - 13,2 ПДК. В целом загрязнение атмосферы Владивостока двуокисью азота достигает величин, опасных для здоровья населения. Пылевое загрязнение Владивостока несколько выше ПДК (в среднем за год q = 0,17 мг/м3). Максимальные ...
... газов согласно выше описанным положениям и с учетом типа выбранного газоочистного оборудования. Рис.1.Принципиальная технологическая схема очистки промышленных газов 4. Описание механизмов очистки газов пылегазоулавливающих установок принятых в схеме В данном разделе будут описаны основные принципы очистки выбранных методов и механизмы очистки газов ...
0 комментариев