2.2 Экстраполяционные методы прогнозирования

Методы экстраполяции тенденций являются, пожалуй, самыми распространенными и наиболее разработанными среди всей сово­купности методов прогнозирования. Использование экстраполяции в прогнозировании имеет в своей основе .предположение о том, что рассматриваемый процесс изменения переменной представля­ет собой сочетание двух составляющих—регулярной и случайной:

 (1.2.2)

Считается, что регулярная составляющая f(a, х) представляет собой гладкую функцию от аргумента (в большинстве случаев— времени), описываемую конечномерным вектором параметров а, которые сохраняют свои значения на периоде упреждения про­гноза. Эта составляющая называется также трендом, уровнем, детерминированной основой процесса, тенденцией. Под всеми этими терминами лежит интуитивное представление о какой-то очищенной от помех сущности анализируемого процесса. Интуи­тивное, потому что для большинства экономических, технических, природных процессов нельзя однозначно отделить тренд от слу­чайной составляющей. Все зависит от того, какую цель пресле­дует это разделение и с какой точностью его осуществлять.

Случайная составляющая n(х) обычно считается некоррели­рованным случайным процессом с нулевым математическим ожи­данием. Ее оценки необходимы для дальнейшего определения точностных характеристик прогноза.

Экстраполяционные методы прогнозирования основной упор делают на выделение наилучшего в некотором смысле описания тренда и на определение прогнозных значений путем его экстра­поляции. Методы экстраполяции во многом пересекаются с мето­дами прогнозирования по регрессионным моделям. Иногда их различия сводятся лишь к различиям в терминологии, обозначе­ниях или написании формул. Тем не менее сама по себе прогнозная экстраполяция имеет ряд специфических черт и приемов, позво­ляющих причислять ее к некоторому самостоятельному виду методов прогнозирования.

Специфическими чертами прогнозной экстраполяции можно назвать методы предварительной обработки числового ряда с целью преобразования его к виду, удобному для прогнозирова­ния, а также анализ логики и физики прогнозируемого процесса, оказывающий существенное влияние как па выбор вида экстра­полирующей функции, так и на определение границ изменения ее параметров.

2.2.1 Предварительная обработка исходной информации в задачах прогнозной экстраполяции

Предварительная обработка исходного числового ряда направ­лена на решение следующих задач (всех или части из них): сни­зить влияние случайной составляющей в исходном числовом ряду, т. е. приблизить его к тренду; представить информацию, содержащуюся в числовом ряду, в таком виде, чтобы существенно снизить трудность математического описания тренда. Основными методами решения этих задач являются процедуры сглаживания и выравнивания статистического ряда.

Процедура сглаживания направлена на минимизацию случай­ных отклонений точек ряда от некоторой гладкой кривой пред­полагаемого тренда процесса. Наиболее распространен способ осреднения уровня по некоторой совокупности окружающих точек, причем эта операция перемещается вдоль ряда точек, в связи с чем обычно называется скользящая средняя. В самом простом варианте сглаживающая функция линейна и сглаживающая груп­па состоит из предыдущей и последующей точек, в более слож­ных — функция нелинейна и использует группу произвольного числа точек.

Сглаживание производится с помощью многочленов, прибли­жающих по методу наименьших квадратов группы опытных точек. Наилучшее сглаживание получается для средних точек группы, поэтому желательно выбирать нечетное количество точек в сглаживаемой группе.

Сглаживание даже в простом линейном варианте является во многих случаях весьма эффективным средством выявления тренда при наложении на эмпирический числовой ряд случайных помех и ошибок измерения. Для рядов со значительной ампли­тудой помехи имеется возможность проводить многократное сгла­живание исходного числового ряда. Число последовательных циклов сглаживания должно выбираться в зависимости от вида исходного ряда, от степени предполагаемой его зашумленности помехой, от цели, которую преследует сглаживание. Надо иметь при этом в виду, что эффективность этой процедуры быстро уменьшается (в большинстве случаев), так что целесообразно повторять ее от одного до трех раз.

Линейное сглаживание является достаточно грубой процеду­рой, выявляющей общий приблизительный вид тренда. Для более точного определения формы сглаженной кривой может применять­ся операция нелинейного сглаживания или взвешенные скользящие средние. В этом случае ординатам точек, входящих в сколь­зящую группу, приписываются различные веса в зависимости от их расстояния от середины интервала сглаживания.

Если сглаживание направлено на первичную обработку число­вого ряда для исключения случайных колебаний и выявления тренда, то выравнивание служит целям более удобного представ­ления исходного ряда, оставляя прежними его значения.

Наиболее общими приемами выравнивания являются логариф­мирование и замена переменных.

В случае если эмпирическая формула предполагается содер­жащей три параметра либо известно, что функция трехпарамет­рическая, иногда удается путем некоторых преобразований иск­лючить один из параметров, а оставшиеся два привести к одной из формул выравнивания.

Можно рассматривать выравнивание не только как метод представления исходных данных, но и как метод непосредствен­ного приближенного определения параметров функции, аппрокси­мирующей исходный числовой ряд. Зачастую именно так и используется этот метод в некоторых экстраполяционных про­гнозах. Отметим, что возможность непосредственного его исполь­зования для определения параметров аппроксимирующей функ­ции определяется главным образом видом исходного числового ряда и степенью наших знаний, нашей уверенности относительно вида функции, описывающей исследуемый процесс.

В том случае, если вид функции нам неизвестен, выравнива­ние следует рассматривать как предварительную процедуру, в процессе которой путем применения различных формул и прие­мов выясняется наиболее подходящий вид функции, описывающей эмпирический ряд.

Одной из разновидностей метода выравнивания является исследование эмпирического ряда с целью выяснения некоторых свойств функции, описывающей его. При этом не обязательно преобразования приводят к линейным формам. Однако результа­ты их подготавливают и облегчают процесс выбора аппроксими­рующей функции в задачах прогностической экстраполяции. В простейшем случае предлагается использовать следующие три типа дифференциальных функций роста:

1) Первая производная, или абсолютная дифференциальная функция роста.

2) Относительный дифференциальный коэффициент, или лога­рифмическая производная,

3) Эластичность функции



Информация о работе «Анализ методов прогнозирования»
Раздел: Международные отношения
Количество знаков с пробелами: 63353
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
110516
5
18

... МП к некритическому экстраполированию результата считается его слабостью. Сети РБФ более чувствительны к «проклятию размерности» и испытывают значительные трудности, когда число входов велико. 5. МОДЕЛИРОВАНИЕ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ПРОГНОЗИРОВАНИЯ СТОИМОСТИ НЕДВИЖИМОСТИ   5.1 Особенности нейросетевого прогнозирования в задаче оценки стоимости недвижимости Использование нейронных сетей можно ...

Скачать
6532
1
0

... используется система методов, с помощью которых анализируются причинно-следственные параметры прошлых тенденций в деятельности предприятия и по результатам анализа формируются изменения в перспективе социально-экономического развития фирмы. Методы прогнозирования классифицируются по различным критериям: - по форме предоставления результата прогнозы делятся на количественные и качественные. ...

Скачать
42802
0
0

... развитие экспертное прогнозирование, ориентированное в большей степени на работу не только с количественной, но и с качественной информацией, получаемой непосредственно от экспертов. 2. Метод экспертного прогнозирования. С помощью этого метода прогнозирования может быть решена большая часть проблем, возникающих при разработке прогнозов. В экспертном прогнозировании существует несколько основных ...

Скачать
44068
3
0

... анализировать их тенденции и прогнозировать ситуацию в будущем. Все участники рынка ценных бумаг планируют свои операции только после тщательного анализа. Статистические методы прогнозирования развития рынка ценных бумаг основаны на построении фондовых индексов, расчете показателей дисперсии, вариации, ковариации, экстраполяции и интерполяции. Фондовые индексы являются самыми популярными во всём ...

0 комментариев


Наверх