8 Union(u,v)
9 return A
Сначала (строки 1-3) множество А пусто, и есть |V| деревьев, каждое из которых содержит по одной вершине. В строке 4 рёбра из Е упорядочиваются по неубыванию веса. В цикле (строки 5-8) мы проверяем, лежат ли концы ребра в одном дереве. Если да, то ребро нельзя добавить к лесу (не создавая цикла), и оно отбрасывается. Если нет, то ребро добавляется к А (строка 7), и два соединённых им дерева объединяются в одно (строка 8).
Подсчитаем время работы алгоритма Крускала. Будем считать, что для хранения непересекающихся множеств используется метод с объединением по рангу и сжатием путей — самый быстрый из известных. Инициализация занимает время O(V), упорядочение рёбер в строке 4 — O(E logE). Далее производится O(Е) операций, в совокупности занимающих время О(Е(Е, V)). (основное время уходит на сортировку).
Алгоритм Прима
Как и алгоритм Крускала, алгоритм Прима следует общей схеме алгоритма построения минимального остова. В этом алгоритме растущая часть остова представляет собой дерево (множество рёбер которого есть А). Формирование дерева начинается с произвольной корневой вершины r. На каждом шаге добавляется ребро наименьшего веса среди рёбер соединяющих вершины этого дерева с вершинами не из дерева. По следствию такие рёбра являются безопасными для А, так что в результате получается минимальный остов.
При реализации важно быстро выбирать лёгкое ребро. Алгоритм получает на вход связный граф G и корень r минимального покрывающего дерева. В ходе алгоритма все вершины, ещё не попавшие в дерево, хранятся в очереди с приоритетами. Приоритет вершины v определяется значением key[u], которое равно минимальному весу рёбер, соединяющих v с вершинами дерева А. (Если таких рёбер нет, полагаем key[V] = ). Поле [v] для вершин дерева указывает на родителя, а для вершины v Q указывает на вершину дерева, в которую ведёт ребро веса key[v] (одно из таких рёбер, если их несколько). Мы не храним множество А вершин строимого дерева явно; его можно восстановить как
A = {(v, [v]):vV \{r} \Q}.
В конец работы алгоритма очередь Q пуста, и множество
A = {(v, [v]):vV \{r}}.
есть множество ребер покрывающего дерева.
MST-Prim(G,W,r)
1 Q V[G]
2 for для каждой вершины uQ
3 do key[u]
4 key[r] 0
5 [r] nil
6 while Q
7do u Extract-Min(Q)
8for для каждой вершины vAdj[u]
9 do if vQ и w(u,v)<key[v]
10 then [v] u
11 key(v) w(u,v)
После исполнения строк 1-5 и первого прохода цикла в строках 6 ‑ 11 дерево состоит из единственной вершины r, все остальные вершины находятся в очереди, и значение key[v] для них равно длине ребра из r в v или , если такого ребра нет (в первом случае [v] = r). Таким образом, выполнен описанный выше инвариант (дерево есть часть некоторого остова, для вершин дерева поле указывает на родителя, а для остальных вершин на "ближайшую" вершину дерева — вес ребра до неё хранится в key[v].
Время работы алгоритма Прима зависит от того, как реализована очередь Q. Если использовать двоичную кучу (7), инициализацию в строках 1-4 можно выполнить с помощью процедуры Build-Heap за время O(V). Далее цикл выполняется \V\ раз, и каждая операция Extract-Min занимает время O(logV), всего O(V logV). Цикл for в строках 8-11 выполняется в общей сложности О(Е) раз, поскольку сумма степеней вершин графа равна 2\Е\. Проверку принадлежности в строке 9 внутри цикла for можно реализовать за время O(1), если хранить состояние очереди ещё и как битовый вектор размера |V|. Присваивание в строке 11 подразумевает выполнение операции уменьшения ключа (Decrease-Key), которая для двоичной кучи может быть выполнена за время O(logV). Таким образом, всего получаем O(V logV + E logV) = O(E logV) — та же самая оценка, что была для алгоритма Крускала.
Однако эта оценка может быть улучшена, если использовать в алгоритме Прима фибоначчиевы кучи, с помощью неё можно выполнять операцию Extract-Min за учётное время O(logV), а операцию Decrease-Key — за (учётное) время O(1). (Нас интересует именно суммарное время выполнения последовательности операций, так что амортизированный анализ тут в самый раз.) Поэтому при использовании фибоначчиевых куч для реализации очереди время работы алгоритма Прима составит O(Е + V logV).
Программная реализация
Реализуем вышеописанные алгоритмы на практике с помощьюDelphi 7.
Данный скрин является подтверждением выполненной работы.
Вывод
Сравнивать будем по количеству затраченного времени поиска дерева, по суммарному весу дерева, по количеству сравнений и присвоений для каждого из алгоритмов. Время вычисляется как среднее время выполнения алгоритмов.
Для алгоритма Прима количество сравнений и присваиваний больше, так как нужно сортировать данные два раза (в алгоритме Крускала 1 раз).
Можно сделать вывод, что для нахождения остова для графов с большим количеством вершин, алгоритм Прима будет затрачивать больше времени. Также для разреженных графов более применителен алгоритм Крускала.
Программный код
program Project1;
uses
Forms,
Unit1 in 'Unit1.pas' {Main},
Unit2 in 'Unit2.pas' {AboutBox};
{$R *.res}
begin
Application.Initialize;
Application.CreateForm(TMain, Main);
Application.CreateForm(TAboutBox, AboutBox);
Application.Run;
end.
unit Unit1;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls, Unit2, Menus;
type
TRebro = record
Fst,Lst,Vs:byte;
end;
Gr = array[1..256] of TRebro;
TVect = array[1..256] of byte;
TMain = class(TForm)
Label1: TLabel;
Label2: TLabel;
Button2: TButton;
Label3: TLabel;
Label4: TLabel;
Button3: TButton;
Label5: TLabel;
Label6: TLabel;
Label7: TLabel;
Label8: TLabel;
Label9: TLabel;
Label10: TLabel;
Label11: TLabel;
Label12: TLabel;
Label13: TLabel;
Label14: TLabel;
Label15: TLabel;
Label16: TLabel;
Label17: TLabel;
MainMenu1: TMainMenu;
N1: TMenuItem;
N2: TMenuItem;
N3: TMenuItem;
N4: TMenuItem;
Label18: TLabel;
Label19: TLabel;
procedure FormCreate(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Button3Click(Sender: TObject);
procedure N2Click(Sender: TObject);
procedure N4Click(Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }
end;
var
Main: TMain;
X:GR;
Mark:TVect;
R,V:byte;//кол-во ребер и вершин соответственно
procedure LoadGraph;
implementation
{$R *.dfm}
Function Timer:longint;
const c60:longint=60;
var h,m,s,s100:word;
begin
decodetime(now,h,m,s,s100);
timer:=((h*c60+m)*c60+s)*100+s100;
end;
procedure LoadGraph;
var f:textfile;
i:byte;
begin
i:=1;
Assignfile(f,'dan.txt');
Reset(f);
R:=0;
V:=0;
Readln(f,R,V);
while not eof(f) do
begin
Readln(f,X[i].Fst,X[i].Lst,X[i].Vs);
Main.Label2.Caption:=Main.Label2.Caption+IntToStr(X[i].Fst)+' '+IntToStr(X[i].Lst)+
' '+IntToStr(X[i].Vs)+#13;
inc(i);
end;
end;
procedure TMain.FormCreate(Sender: TObject);
begin
LoadGraph;
end;
//Алгоритм Крускала
procedure TMain.Button2Click(Sender: TObject);
var j,k,v2,Ves_gr:byte;
t1,t2,t,Sr,Pr:longint;
Tk:real; Y:Gr;
procedure UniteComponents(a,b:byte);
var i:byte;
begin
If a>b then begin inc(sr);Pr:=Pr+3;i:=a; a:=b; b:=i; end else inc(sr);
for i:=1 to V do
If Mark[i] = b then begin Mark[i]:=a;inc(pr);end;
Sr:=Sr+V;
end;
procedure SortRebr(var X:Gr);
var i,n,j,numb:integer; Mx:TRebro;
begin
N:=R;
for i:=1 to R-1 do
begin
Mx:=X[1];
numb:=1;
Pr:=Pr+2;
For j:=2 to N do
If X[j].Vs>Mx.Vs then
begin
inc(Sr);
Pr:=Pr+2;
Mx:=X[j];
numb:=j;
end
else inc(sr);
X[numb]:=X[N];
X[N]:=Mx;
N:=N-1;
pr:=Pr+3;
end;
end;
begin
Y:=X;
t:=0;
for k:=1 to 100 do
begin
Sr:=0; //кол-во сравнений
Pr:=0; //кол-во присваиваний
Ves_gr:=0;
SortRebr(X);
Label3.Caption:='';
t1:=timer;
for v2:=1 to V do
Mark[v2]:=v2;
for j:=1 to R do
If Mark[X[j].Fst]<>Mark[X[j].Lst] Then
Begin
Label3.Caption:=Label3.Caption+IntToStr(X[j].Fst)+' '+IntToStr(X[j].Lst)+
' '+IntToStr(X[j].Vs)+#13;
inc(sr);
Ves_gr:=Ves_gr+X[j].Vs;
UniteComponents(Mark[X[j].Fst],Mark[X[j].Lst]);
end
else inc(Sr);
t2:=timer;
T:=t+t2-t1;
label12.Caption:=inttostr(Ves_gr);
label14.Caption:=inttostr(Pr);
label16.Caption:=inttostr(Sr);
X:=Y;
end;
Tk:=abs(t/100);
label6.Caption:=FloatToStr(Tk)+'*0.01 c';
end;
//Алгоритм Прима
procedure TMain.Button3Click(Sender: TObject);
const MaxVes=255;
var Mark:array[1..10] of boolean;
D,Res:array[1..10] of byte;
i,j,imin,min,k:byte;
t1,t2,t,Sr,Pr,Ves_gr:longint; TP:real;
Function FindVes(i,j:byte):byte;
var k:byte;
begin
k:=0;
Repeat
inc(k);
Until (k>16) or
( (X[k].Fst=i) and (X[k].Lst=j) )
or( (X[k].Fst=j) and (X[k].Lst=i) );
if k>16 then FindVes:=255 else
FindVes:=X[k].Vs;
end;
Function Aps(i,j:byte; var Ves:byte):boolean;
var k:byte;
begin
k:=0; inc(pr);
Repeat
inc(k); inc(pr);
Until (k>R) or
( (X[k].Fst=i) and (X[k].Lst=j) )
or( (X[k].Fst=j) and (X[k].Lst=i) );
if k>R then begin inc(sr);Aps:=false; end else
begin inc(sr);pr:=pr+2;Ves:=X[k].Vs; Aps:=true end;
end;
Procedure Calc(i : byte);
Var j : byte;
Begin
For j := 1 To V Do
If Not Mark[j] Then
If Aps(i,j,D[j]) Then begin Res[j] := i; inc(pr);end;
inc(sr);
End;
begin
t:=0;
for k:=1 to 100 do
begin
Sr:=0;
Pr:=0;
Ves_gr:=0;
t1:=timer;
Label7.Caption:='';
For i := 1 To V Do begin
D[i] := MaxVes; Mark[i]:=false;end;
Pr:=2*V;
Mark[4] := True;
Calc(4);
For j := 1 To V-1 Do Begin { каркас состоит из n-1 ребер }
min := MaxVes; inc(pr);
For i := 1 To V Do
If Not Mark[i] Then
If min > D[i] Then Begin
Sr:=Sr+2; Min := D[i]; imin := i; pr:=pr+2;
End
else sr:=Sr+2
else inc(sr);
Mark[imin] := True;
Calc(imin);
pr:=pr+2;
ves_gr:=ves_gr+FindVes(imin,Res[imin]);
label7.Caption:=Label7.Caption+IntToStr(imin)+' '+IntToStr(Res[imin])+
' '+IntToStr(FindVes(imin,Res[imin]))+#13;
end;
label13.Caption:=inttostr(Ves_gr);
label15.Caption:=inttostr(Sr);
label17.Caption:=inttostr(Pr);
t2:=timer;
t:=t+t2-t1;
end;
TP:=abs(t/100);
Label8.Caption:=floattostr(TP)+'*0.01 c';
end;
procedure TMain.N2Click(Sender: TObject);
begin
close;
end;
procedure TMain.N4Click(Sender: TObject);
begin
aboutbox.Show;
end;
end.
unit Unit2;
interface
uses Windows, SysUtils, Classes, Graphics, Forms, Controls, StdCtrls,
Buttons, ExtCtrls;
type
TAboutBox = class(TForm)
Panel1: TPanel;
ProgramIcon: TImage;
ProductName: TLabel;
Version: TLabel;
Copyright: TLabel;
Comments: TLabel;
OKButton: TButton;
procedure OKButtonClick(Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }
end;
var
AboutBox: TAboutBox;
implementation
{$R *.dfm}
procedure TAboutBox.OKButtonClick(Sender: TObject);
begin
close;
end;
end.
1. Ахо А., Хопкрофт Дж., Ульман Дж. Структуры данных и алгоритмы. — М.: Видавничий будинок «Вільямс», 2001.
2. Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. — М.: МЦНМО, 2001
3. Теория графов Н. Кристофидес – «Мир» Москва, 1978
4. Методические указания.
0 комментариев