2. Защита анкерных устройств от коррозии

 

Коррозия (древне лат.) (CORROSIO) - это разъедание, т.е самопроизвольное разрушение твердых тел, вызванное химическими и электрохимическими процессами,

развивающимися на поверхности тела при его взаимодействии с внешней средой.

Коррозия металлов – это физико-химический процесс, вызывающий разрушение металла или изменение его свойств в результате химических или электрохимических процессах при взаимодействии с окружающей средой.

Все изделия, применяемые для закрепления трубопроводов, должны обладать химической и механической стойкостью по отношению к воздействиям среды, в которой они устанавливаются.

Анкерные устройства изготавливаются из чугуна или стали, обеспечивающих механическую

прочность и возможность соединения их между собой.

Чтобы анкеры были более долговечны и не коррозия анкера

подвергались коррозии, их защищают различными покрытиями:

·           пластмассовыми оболочками

·           покрытиями из специальных растворов

·           антикоррозийными затворами

Изоляция анкерных устройств должна выполняться в базовых или заводских условиях. В трассовых условиях необходимо осуществлять изоляцию участков соединения анкерных тяг с силовыми поясами.

Защитное антикоррозионное покрытие анкерных тяг должно иметь не более двух отслоений площадью поверхности до 20 см² на 1 м². Отклонения по толщине защитного покрытия не должны превышать ±10%. При проверке качества защитных покрытий рассматриваются документы, характеризующие составляющие компоненты в отношении соблюдения сроков их годности.

Для защиты от коррозии винтовая лопасть покрывается резиновой мастикой по грунтовке ГТ-752. Анкерные тяги и силовой пояс изолируются липкими полимерными лентами в два слоя с нахлестом, составляющим 10% от ширины ленты.

Антикоррозионная защита оголовка всех постоянных анкеров включает в себя: защитный гидроизоляционный колпак и антикоррозионный состав, заполняющий свободное пространство.

В некотроых случаях анкера для защиты от коррозии покрывают гальванпокрытиями.

Перед нанесением металлизационного покрытия с защищаемой поверхности стали должна быть полностью удалена ржавчина.

Металлизационное покрытие следует предохранять от механических повреждений при складировании, транспортировании и установке анкера.

Анкерные устройства для защиты от коррозии покрывается слоем оксидной окраски.

В сильноагрессивных средах (средняя интенсивность коррозии свыше 0,5 мм/год) при сроке эксплуатации более двух лет следует применять усиленную антикоррозионную защиту.

В среднеагрессивных средах (средняя интенсивность 0,1-0,5 мм/год) при сроке эксплуатации более двух лет следует применять нормальную антикоррозионную защиту.

В слабоагрессивных средах (средняя интенсивность коррозии до 0,1 мм/год) при сроке эксплуатации до двух лет допускается легкая антикоррозионная защита.

Усиленная антикоррозионная защита тяги в области заделки должна включать: цементный камень толщиной более 20 мм и упорную трубу (ГОСТ 8731-74 и ГОСТ 8733-74), работающих на сжатие: оболочку из полиэтилена (ГОСТ 226891-77, ГОСТ 18599-83 и ГОСТ 19034-82); заполняющую массу (ЭКН, герметик Гидропроекта или гидрофобный заполнитель ЛЗ-КI).

Упорная и манжетные трубы при усиленной антикоррозионной защите должны защищаться металлизационным покрытием алюминия толщиной 200 мкм или слоем цементного камня, работающего на сжатие, толщиной 3 см.

Замковая труба должна защищаться металлизационным покрытием алюминия толщиной 200 мкм.

Усиленная антикоррозионная защита в свободной части должна состоять из слоя глиноцементного камня, защитной полиэтиленовой оболочки и антикоррозионной массы.

3. Несущая способность анкерных устройств

Несущая способность каждого анкера, как правило, должна быть проверена до включения его в работу совместно с закрепляемой конструкцией путем контрольных или приемочных испытаний на максимальную испытательную нагрузку.

В слабых грунтах повысить несущую способность анкера по грунту можно путем увеличения длины корня анкера или его диаметра, правильного выбора технологии нагнетания.

Расчет расстояния между винтовыми анкерными устройствами с повышенной удерживающей способностью, со следующие исходными данными:

диаметр трубопровода Dн = 250мм;

толщина стенки трубопровода δ = 8мм;

толщина изоляции δиз=1мм;

толщина футеровки δф=25мм

объемный вес воды γв=1100 кГс/ м3

объемный вес изоляционного покрытия γиз=1200 кГс/ м3

объемный вес футеровки γф=840 кГс/ м3;

вид перекачиваемого продукта: газ

диаметр корня анкера Dанк=0,2 м

длина корня анкера Lk=0,6 м

коэффициент замоноличивания анкера kа = 5,5

вертикальное расстояние от поверхности грунта до середины анкера h = 2м

Удельный вес грунта γг = 2,12·104 кГс/м3

 

Рассмотрим случай, когда трубопровод прямолинейный и течение воды отсутствует. Проверку такого трубопровода против всплытия следует производить из условия:

где Б – вес балласта под водой;

Км – коэффициент безопасности по материалу, зависящий от вида балластировки и определяемый по таблице 2;

К у.л – коэффициент надежности при расчете устойчивости положения трубопровода против всплытия (коэффициент устойчивости на всплытие), который принимается по таблице 3;

А – расчетная выталкивающая сила воды, действующая на трубопровод с учетом изоляции и футеровки (Архимедова сила), которая определяется по формуле:

Q – вес единицы длины трубы с учетом изоляции, футеровки и перекачиваемого продукта (на воздухе):

 

составляющие вышеприведенной формулы определяются по формулам:

Таблица 2

Вид балластировки

 Значение Км

Анкерные устройства 1,0

 

Таблица 3

 Тип водоемов

 Значение Ку.л

Для болот, водоемов при отсутствии течения воды, пойм рек и периодически заливаемых участков 1%-ной обеспеченности

 

1,05

Для водных преград шириной зеркала воды до 200 м для трубопроводов диаметром 1000 мм. 1,1
Для всех подводных переходов диаметром 1000 мм. При диаметре менее 1000 мм, но ширине зеркала менее 200 м и горных рек с неустойчивым руслом. 1,15

При балластировке трубопроводов металлическими винтовыми анкерными устройствами расчетное усилие (допускаемая нагрузка) определяется по формуле:

где Zа – число анкеров в одном анкерном устройстве;

Кгр – коэффициент несущей способности грунта, в котором находятся лопасти анкеров; (таблица 4)

ma – коэффициент условий работы анкерного устройства принимается равным 0,5 при Za<2 и 0,4 при Za>2;

Na – максимальная (критическая) нагрузка на один винтовой анкер, завинченный в грунт I группы на глубину не менее 6 диаметров лопасти (таблица 5).

Значение коэффициента Кгр Таблица 4

Группа грунта

 Грунты

 Kгр

I Мягкопластичные глины и суглинки, пластичные супеси 1
II Пески мелкие, плотные и средней плотности, маловлажные, влажные и водонасыщенные; полутвердые тугопластичные глины и суглинки. 2
III Пески гравелистые, крупные и средней зернистости, маловлажные, влажные и водонасыщенные; твердые супеси, глины и суглинки. 3

Максимальная нагрузка на один винтовой анкер Na, кгс Таблица 5

Da, мм

100

150

200

250

300

400

500

600

Na, H

6500

7500

12500

21000

30000

53000

83000

120000

Несущая способность анкера:

 

Расстояния между анкерами:

 

Дополнительно определяется расстояние между анкерами из условия прочности:

где

R2 –расчетное сопротивление трубной стали;

W – осевой момент сопротивления поперечного сечения трубы;

Pпл - распределенная нагрузка на участке, свободном от грузов–( положительная плавучесть);

где Vв - объем воды, вытесненный 1 м трубы с учетом изоляции;

При la> lamax принимается значение lamax.

Несущая способность заглубленного винтового анкера диаметром d, длиной l, заглубленного в грунт с объемным весом γвст, на глубину h, равна:

где

φ –угол внутреннего трения грунта;

α - угол наклонного троса к горизонту (принимается равным 20-30º);

k – коэффициент запаса, к=1,2.

Параметры анкера и грунта

d, м

0,30

l

2,5

h

1,8

γвст, кН/м³

23,5

с, кПа

16,0

φ, град

14

Несущая способность анкеров со стержневыми оттяжками составляет 150—500 кН, с трубчатыми 300—1500 кН, а с проволочными 500—2500кН.



Информация о работе «Закрепление магистральных трубопроводов анкерными устройствами»
Раздел: Строительство
Количество знаков с пробелами: 68287
Количество таблиц: 7
Количество изображений: 11

Похожие работы

Скачать
68285
36
17

... . кафедрой г. Тюмень, 1997 г. Содержание. Введение. Конструкторская часть. Технология строительства магистральных трубопроводов. Общая технология. Способы закрепления трубопроводов. Особенности предлагаемого анкерного закрепления трубопровода. Примерная технология производства работ при использовании анкерных стержней. ...

Скачать
108091
0
0

... необходимо наносить после просушки предыдущего слоя. 6.22. Защиту от коррозии опорных и других металлоконструкций надземных трубопроводов необходимо выполнять в соответствии со СНиП 3.04.03-85. Контроль качества изоляционных покрытий 6.23. Качество изоляционных покрытий магистральных трубопроводов должен проверять подрядчик в присутствии представителя технадзора заказчика по мере их нанесения, ...

Скачать
64175
23
5

... осветительных установок применяется осветительный трансформатор типа ТСШ-2,5/0,5, который присоединяется к сети при помощи магнитного пускателя и реле утечки УАКИ-127. По ПБ находящийся в подземных горных выработках человек должен иметь индивидуальный аккумуляторный светильник, который имеет продолжительность нормального непрерывного горения не менее 10 часов.   Прокладка трубопроводов и ...

Скачать
53441
20
4

... трубопровод подвешивается на тросу натянутого вдоль борта выработки, с противоположной стороны от свободного прохода , на высоте выше габарита подвижного состава. 8. РАЗРАБОТКА ГРАФИКА ЦИКЛИЧНОЙ ОРГАНИЗАЦИИ РАБОТ 8.1 Планирование труда Количество смен в сутки – 4 Количество циклов в смену – 1 Для планирования труда и заработной платы используются нормативные справочники «Единые отраслевые ...

0 комментариев


Наверх