4.      ПРОВЕДЕНИЕ ИСПЫТАНИЯ

Испытание конструкции динамической нагрузкой является более сложным, чем испытание статической нагрузкой. Эта сложность заключается в том, что испытательная нагрузка и испытательные приборы, применяемые для записи деформаций, представляют собой в большей своей части механизмы, приводимые в движение во время испытания. Причем требуется, чтобы они работали синхронно и четко, как один общий агрегат. Необходимо составить подробный план проведения испытания, в котором надо предусмотреть все детали, даже имеющие второстепенное значение.

Обработку результатов испытания желательно разделить на две части:

1) полевую обработку результатов для оценки правильности протекания эксперимента и для своевременного устранения возможных неполадок;

2) камеральную обработку результатов испытания с вычислением всех намеченных к определению величин: амплитуд и частот колебаний, ускорений, напряжений, динамических коэффициентов и т. п.

Рассмотрим некоторые случаи проведения испытаний сооружений динамической нагрузкой.

Экспериментальное определение частоты свободных колебаний конструкции

Определение частоты свободных колебаний имеет большое значение для правильной эксплуатации исследуемой конструкции. Зная частоту собственных колебаний конструкции, можно решить вопрос о допустимости установки на исследуемом объекте какого-либо агрегата, создающего при его движении возмущающую нагрузку с определенной частотой, или же выяснить, какой агрегат из ранее установленных создает резонанс, и найти возможные пути ликвидации этого явление.

Определение частоты свободных колебаний конструкции или ее элемента, можно осуществить двумя способами.

Первый способ. Конструкция подвергается отдельному удару, который вызовет ее затухающие (свободные) колебания, и на установленном заранее вибрографе или осциллографе записать виброграмму. Имея запись колебаний и времени, можно подсчитать частоту колебаний исследуемой конструкции. При эксперименте фотоленту прибора следует пускать с достаточно большой скоростью и для подсчета частоты колебаний брать длинный участок записи, что обеспечит условия для наиболее точного определения частоты.

При обработке виброграммы первые две-три полуволны исключаются из рассмотрения, так как на них отражается непосредственное действие удар. Определение числа колебаний рекомендуется вести на остальной части виброграммы, где колебания имеют более установившийся характер. Следует иметь в виду, что скорость движения ленты переменная, поэтому необходимо следить за показаниями отметчика времени.

Второй способ. На испытываемом элементе устанавливается вибромашина. Затем приводят её в действие, увеличивая ступенями число оборотов. При каждой ступени оборотов, выждав, пока колебания конструкции примут стабильный характер, делают необходимые записи самопишущими приборами (вибрографом, динамическим прогибомером или осциллографом).

Когда частота возмущающей силы вибромашины совпадает с частотой собственных свободных колебаний конструкции, образуется резонанс, который резко выделится на виброграмме возросшими размерами амплитуд. Полезно одновременно изме­рить частоту вращения вибромашины с помощью тахометра или частотомера, что даст возможность проверить также правильность показаний отметчика времени и более уверенно вычислить частоту собственных колебаний.

4.2. Определение динамических коэффициентов

Динамические коэффициенты определяются, как правило, для тех конструкций, по которым перемещаются подвижные нагрузки, например железнодорожные составы, автомобили, мостовые краны и т. п. и необходимы для расчета подобных конструкций. Определяемые расчетным путем напряжения и деформации от динамических нагрузок суммируются с напряжениями и деформациями от статических нагрузок.

При проектировании динамический коэффициент определяют теоретически с рядом допущений или же используют динамические коэффициенты, полученные экспериментально для аналогичных сооружений, ранее построенных. Для мостов такие определения динамических коэффициентов ведутся много лет и накоплен достаточно богатый опытный материал.

При экспериментальном определении динамического коэффициента его значение выводится из соотношения

(14)

 
,

где  - максимальный прогиб балочной конструкции при мед­ленном проходе нагрузки (статическое загружение);

 - максимальный прогиб при движении нагрузки со скоростью, вызывающей наибольшие колебания конструкции (динамическое загружение).

Такие два загружения можно легко осуществить для нагрузок, движущихся по рельсам (локомотивы, трамваи, подъёмные краны и т. п.).

При экспериментальном определении динамического коэффициента для автодорожных мостов, где повторить идентичное загружение почти не представляется возможным, подвижную нагрузку пропускают по мосту не дважды, а один раз со скоростью, вызывающей наибольшие колебания конструкции, и записывают виброграмму или осциллограмму прогибов (рис. 7). Наибольшая ордината даст величину максимального динамического про­иба . Для получения прогиба от статической нагрузки необходимо на записанной кривой провести среднюю линию, делящую пополам размах вибраций; эта кривая представляет собой диаграмму статических прогибов, и её наибольшая ордината  принимается для определения динамического коэффициента.

Определение напряжений в элементах конструкции при действии динамической нагрузки

 

Напряжения в элементе конструкции при действии динамической нагрузки состоят из напряжения от статической нагрузки, включая собственный вес элемента, сложенного с динамическим напряжением вызванным вибрацией:

В этом случае учитываются только те динамические напряжения, которые имеют одинаковый знак с напряжениями от статической нагрузки. Например, если рассматривается изгибаемая балка, то к напряжениям от статической нагрузки прибавляются напряжения, вызываемые динамической нагрузкой, при деформации балки в сторону статического прогиба.

Для определения  необходимо вычислить инерционную силу, действующую на исследуемый элемент. Инерционная сила равна массе, умноженной на ускорение:

.

Ускорение можно измерить акселерометром или получить из виброграммы, пользуясь формулой:

,

где - период колебания;

 - наибольшая амплитуда;

 - ускорение элемента конструкции. Отсюда

Отсюда

,

где  - частота колебаний элемента.

Во всех точках, где требуется определить ускорение, надо установить акселерометры, вибрографы, динамические прогибомеры или прогибомеры с проволочными датчиками и записать виброграммы или осциллограммы.

При действии на элемент осевой силы динамическое напряжение

.

В случае действия на балку на двух шарнирных опорах со­средоточенной силы , приложенной в середине пролета, динамическое напряжение равно:

.

Если вибрирует балка на двух шарнирных опорах под действием собственного веса и равномерно распределенной нагрузки, то динамическое напряжение можно вычислить по формуле:

.

где - масса, приходящаяся на единицу длины балки;

 - ускорение, определенное на середине пролета балки.

При вибрации балки, несущей равномерно распределенную нагрузку и сосредоточенный груз посередине пролета, динамическое напряжение найдется по формуле

/

Когда вибрирующая балка несет сложную нагрузку, состоящую из ряда сосредоточенных сил и сплошных неравномерных нагрузок, теоретическое вычисление приведенной массы которых представляет некоторые затруднения, рекомендуется следующий прием. Балка вместе с приходящейся на нее нагрузкой разбивается на ряд участков, в пределах которых просто вычислить величины масс  каждого участка. В центрах каждого участка устанавливаются акселерометры, вибрографы или прогибомеры с петлевыми тензорезисторами и записываются осциллограммы или виброграммы, по которым определяются ускорения . Перемножив массы на соответствующие ускорения, находят инерционные силы , действующие в каждом участке балки. Зная величины инерционных сил и точки их приложения, принимаемые в центрах отдельных участков, можно вычислить изгибающие моменты, действующие на балку, и определить динамические напряжения в любом сечении по ее пролету.

Определение напряжений в конструкции от динамической нагрузки можно также произвести с помощью петлевых тензорезисторов, наклеенных в тех местах, где необходимо найти эти напряжения, и просуммировать их с напряжениями от статической нагрузки. При таком определении напряжений надо знать величину модуля упругости материала конструкции.

Вибрационные колебания конструкции непрерывно меняют величину суммарного напряжения. В большинстве случаев знаки напряжений остаются постоянными, так как напряжения от статической нагрузки превалируют над напряжениями от динамической нагрузки. Однако возможны случаи, когда суммы напряжений от статической и динамической нагрузок будут переходить через нуль и напряжения станут знакопеременными. В том и другом случаях возможно возникновение усталости материала, причем во втором случае, когда имеются знакопеременные напряжения, явление усталости проявляется в большей степени, чем в первом.

Для возникновения усталости материала необходимо большое число циклов изменений напряжений, исчисляемое сотнями ты­сяч и миллионами.


4. ЛАБОРАТОРНАЯ РАБОТА. "ДИНАМИЧЕСКОЕ ИСПЫТАНИЕ СТАЛЬНОЙ БАЛКИ. ОПРЕДЕЛЕНИЕ ПОГРЕШНОСТИ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ"

 

4.1. Виброизмерительные приборы

 

4.1.1.  Сведения о теории и классификация приборов

Динамические испытания строительных конструкций отличаются от статических тем, что величина и направление нагрузки не остаются постоянными на этапах загружения, они сравнительно быстро изменяются во времени и вызывают линейные и угловые перемещения.

Параметрами линейной вибрации являются; перемещения, скорость, ускорения и резкость (первая производная от ускорения).

К параметрам угловой вибрации относятся: угол поворота, угловая скорость, угловое ускорение, угловая резкость.

Параметрами обеих видов вибрации служат: фаза, частота и коэффициент нелинейных искажений. Для их измерения необходима внешняя неподвижная система координат, относительно которой крепятся виброизмерительные приборы, фиксирующие абсолютные перемещения. Если создание такой системы затруднительно, применяют подвижную систе­му отсчета и вибропреобразователи инерционного действия. Основным элементом вибропреобразователя является инерционная масса m, соеди­ненная с корпусом прибора пружиной жесткостью к и демпфирующим элементом с коэффициентом успокоения с (рис. 2). Корпус прибора со­вершает колебания у вместе с исследуемой конструкцией. Масса перемещается относительно корпуса прибора на величину z, которая может быть записана на вращающемся с заданной скоростью барабане. Пе­ремещение пружины — х. Следовательно, z = х + у.

Для определения закономерностей движения системы запишем дифференциальное уравнение движения массы m по времени t:

(14)

 

(15)

 
Подставив значение z, получим

,

где точки над буквами обознача­ют дифференцирование по времени.

Для анализа работы вибропреобразователя введем в уравнение (15) следующие обозначения:

 - частота собственных колебаний системы;

 - коэффициент затуха­ния.

(16)

 
Тогда .

Если в приборе нет демпфирующего элемента  и частота собственных колебаний незначительная , то. Пренебрегая произвольными постоянными, получим , и показания прибора будут соответствовать действительным перемещениям испытываемой конструкции. Такой прибор называется виброметром.

Инерционная масса (или сейсмомасса) при податливой пружине практически не меняет своего положения в пространстве.

Если при низкой частоте собственных колебаний  в прибор ввести хорошо гасящий колебания демпфирующий элемент, то из уравнения (16), пренебрегая первым и третьим слагаемыми, получим , откуда . Такой прибор служит для определения скорости колебаний и его называют виброметром скорости (вибровелосиметром).

При отсутствии демпфера и высокий частоте колебаний перемещение массы пропорционально ускорению;  и такой прибор является виброметром ускорения (виброакселерометром).

Виброизмерительные приборы можно разделить на две основные группы: контактные и дистанционные (рис.8). К контактным приборам относятся механические и оптические приборы, применяемые чаще при освидетельствовании конструкций для приближённого определения параметров колебаний (амплитуд и частот). Аналогично назначение и оптических приборов. Более точные измерения могут быть получены приборами с регистрацией показаний на специальной ленте или бумаге ручным вибрографом или вибрографом Гейгера.

Бесспорными преимуществами обладают дистанционно работающие вибропреобразователи, устанавливаемые на испытываемой конструкции (первичные приборы), сигнал которых записывается вторичными прибо­рами, установленными на определенном расстоянии от испытываемой конструкции.

Процесс измерения динамических характеристик испытываемой кон­струкции обычно состоит из следующих операций:

-преобразование измеряемой величины в другую физическую вели­чину более удобную для измерения;

-измерение вторичной физической величины;

-регистрация измерений;

-обработка результатов измерений.



Информация о работе «Испытание конструкций динамическими нагрузками»
Раздел: Строительство
Количество знаков с пробелами: 67047
Количество таблиц: 2
Количество изображений: 21

Похожие работы

Скачать
150249
46
0

... жилую часть всего дома Наименование работ Стоимость, руб в ценах 1984 г в ценах 1996 г Стоимость жилого дома с встроенными помещениями 9555515 79826772000 Стоимость встроенных помещений 1033155 8630976800 Стоимость жилой части 8522360 71195795000 Стоимость одной блок - секции 426118 3559789700 Стоимость 1 м2 жилья ...

Скачать
96799
17
19

... в заделке (точка В) и момента в точке приложения нагрузки от канатной подвески (точка Е) (2.5) В реальных конструкциях лифтов величина Км ≥ 10, поэтому доля влияния моментов в узлах соединения балок со стойками очень мала, что делает вполне оправданным упрощенный расчет балок и стоек каркаса.   2.1.3 Устройство и расчет пола кабины Горизонтальная рама каркаса ...

Скачать
48513
6
0

... строительства и архитектуры необходимо включить в план работ Института экономики вопрос о переходе от планирования по стоимости готовой продукции к планированию по стоимости строительно-монтажных работ Задание 6.Определить и описать инженерно-геологические процессы, которые могут возникнуть при фильтрационном воздействии на них подземных вод. Указать мероприятия по борьбе с этими процессами. ...

Скачать
74363
6
0

... свободном от нагрузки подшипника и является суммой зазоров между дорожками качения колец и роликов, а осевой – между бортами наружных колец и роликов.))У роликовых подшипников в зависимости от конструкции буксы нагрузку воспринимают 5-6 роликов , находящихся сверху примерно на 1/3 длины окружности наружного кольца подшипника.Цилиндрические подшипники радиальными роликовыми подшипниками с короткими ...

0 комментариев


Наверх