4. Голографическая интерферометрия

Интерференция наблюдается при сложении двух волн, когда при условии их когерентности, т.е. постоянной разности фаз этих волн, возникает характерное пространственное распределение интенсивности света — интерференционная картина. Фотопластинка-детектор регистрирует это в виде чередующихся светлых и темных полос, или интерферограммы.

Для определения остаточных напряжений применялась и обычная интерферометрия, но эту работу можно было провести только в хорошо оборудованной лаборатории: требовалась специальная подготовка поверхности исследуемого объекта, придание ей правильной формы, специальное освещение и оборудование.

Когда создали лазер, т.е. источник излучения с высокой пространственной и временной когерентностью, стала развиваться оптическая голография — способ записи и восстановления световых волн, рассеянных объектом и несущих информацию о его форме (т.е. трехмерного образа объекта). Некоторые методики интерферометрии сильно упростились, так как снялись проблемы освещения и подготовки поверхности.

Принципиальная оптическая схема для записи голограммы по Лейту—Упатниексу показана на рис.1. Луч лазера (1) расширяется линзой (2) и делится полупрозрачным зеркалом (3) на две части. Одна часть — это опорный луч (ОЛ) — проходит через зеркало и сразу падает на фотопластинку-детектор (5). Вторая часть, отраженная от зеркала, освещает объект (4) и, диффузно рассеянная им, проходит через линзу (6) и тоже падает на детектор. Это предметный луч (ПЛ).


Рис.1. Принципиальная схема записи голограммы Лейта—Упатниекса: 1 — лазер, 2 — линза, 3 — полупрозрачное зеркало, 4 — объект, 5 — фотопластинка-детектор, 6 — линза в режиме лупы, ОЛ — опорный луч , ПЛ — предметный луч.

Заметим, что наличие линзы (6) не принципиально для записи голограмм, однако необходимо для измерения остаточных напряжений. Линза находится на фокусном расстоянии от объекта и поэтому работает в режиме лупы: на фотопластинке записывается не весь образ объекта, а малая, но увеличенная в 2—5 раз, его часть — область поверхности с отверстием. Это помогает рассмотреть довольно плотно расположенные (особенно на кромке отверстия) полосы интерферограммы.

С развитием голографии возникла голографическая интерферометрия, выполняемая гораздо проще, чем обычная, с меньшими затратами и ограничениями. Ее сущность такова: если совместить две голограммы объекта, записанные в различное время при разных состояниях поверхности объекта (один из способов — записать на одну фотопластинку), то при освещении этой фотопластинки лазерным лучом возникает результирующая интерферограмма, отражающая разницу геометрических состояний объекта. Линии интерферограммы показывают как перемещения целого объекта, так и деформацию его поверхности. Общие и локальные перемещения обычно хорошо разделяются.

Голография позволила исследовать объекты с любым, самым замысловатым рельефом. Подготовка поверхности стала минимальной. Главное — ее микрорельеф не должен измениться за время исследования. Другими словами: очистить, промыть и не загрязнить — требования на бытовом уровне.

Осталось несколько важных условий: интерферометрическую установку надо прочно крепить на объекте (или объект на установке), а одна из ее измерительных частей должна сниматься, чтобы не мешать сверлению, и надежно возвращаться на прежнее место. Для такого возврата существуют относительно простые методы, например: на одной части разъема по окружности расположены три стальных шарика с расстоянием по дуге 120°, а на ответной стальной части — три радиальных шлифованных паза под тем же углом. Такое устройство обеспечивает съем и возврат снимаемой части в прежнее положение с точностью до 0.1 мкм. Оно хорошо работало в стационарной лабораторной измерительной установке. В дальнейшем были разработаны оптические схемы, позволявшие исключить движущиеся части. Эти схемы были заложены в основу переносных приборов.

Сущность способа определения остаточных напряжений методом зондирующей лунки в сочетании с голографической интерферометрией заключается в следующем. Во время первой экспозиции записывается голограмма окрестности будущей лунки на поверхности объекта в исходном состоянии. Потом создается возмущение поверхности тела (например, путем высверливания или травления малой лунки), что позволяет проявиться остаточным напряжениям: изъятие малого объема приводит к локальным упругим перемещениям, пропорциональным остаточным напряжениям. Далее записывается голограмма возмущенной таким образом поверхности тела. В результате наложения голограмм при их одновременном восстановлении упругие перемещения поверхности в окрестности лунки выявляются в виде интерферограммы. Она наглядна и проста для расшифровки: в случае регистрации нормальной компоненты перемещений (перпендикулярной к исходной поверхности тела), полосы интерферограммы являются линиями уровня, т.е. равных перемещений, отличающихся по высоте на половину длины волны лазерного излучения~ 0.3 мкм (рис.2).

Оси симметрии интерференционной картины совпадают с направлениями экстремальных (главных) растягивающих и сжимающих остаточных напряжений. Величина напряжений пропорциональна числу интерференционных полос, причем цена полосы зависит от упругих свойств материала и от диаметра и глубины лунки и определяется по графикам (рис.3), рассчитанным на основании решения трехмерной задачи теории упругости.

Объем необходимых вычислений для получения значений напряжений очень мал, и они могут быть выполнены оператором сразу же при получении и наблюдении интерференционной картины. При этом, в отличие от тензометрирования, где измерения выполняются для отдельных точек, данный метод регистрирует линии уровня перемещений по всей области поверхности тела в окрестности зондирующей лунки, что позволяет визуально определять направления главных напряжений и делать качественные выводы о свойствах напряжений еще до подсчета числовых значений соответствующих величин.

Тем самым были созданы основы метода для массовой лабораторной работы по измерению остаточных напряжений. Начались исследования остаточных напряжений в сварных соединениях и отработка режимов сварки стали, алюминия, титана, магния. Вначале работа велась с образцами на лабораторном стенде. Новая методика оказалась эффективной при отработке технологии электронно-лучевой сварки и локальной термической обработки образцов разного сечения (плоских, тавровых, цилиндрических, сферических) из высокопрочных сталей разных марок и титановых сплавов.

По мере накопления опыта был сделан следующий важный шаг — создан переносной прибор, который работал не только в лаборатории, но и в цеху и на открытом воздухе. С этим прибором в заводских условиях выполнена комплексная программа по отработке режимов сварки и локальной термической обработки титановых крупногабаритных сосудов высокого давления объемом 1000 л, рассчитанных на рабочее давление 300 атм. Разработка новой технологии шла при непрерывном контроле остаточных напряжений. В итоге технология изготовления сосудов была значительно изменена, удешевлена, а качество изделия повышено. Это исследование проводилось в цехах Авиационного научно-технического комплекса им. А.Н. Туполева. С этим же прибором были сделаны первые выезды на строящуюся Курскую АЭС и Астраханский газоперерабатываюший завод, где измерялись сварочные напряжения в реальных конструкциях в трудных климатических условиях. В сотрудничестве с Конструкторским бюро им. С.А. Лавочкина была усовершенствована технология сварки и режимов термической обработки сварных соединений ряда алюминиевых сплавов, а также выполнена экспертная работа по установлению причин саморазрушения корпуса одного из космических аппаратов во время хранения.

На основе проведенных исследований создано несколько видов портативных голографических систем для измерения напряжений под общим названием ЛИМОН — лазерно-интерферометрический метод определения напряжений, и с помощью этих систем выполнена программа по отработке режимов сварки и локальной термической обработки титановых крупногабаритных сосудов высокого давления объемом 1000 л, рассчитанных на рабочее давление 300 атм. Разработка новой технологии шла при непрерывном контроле остаточных напряжений. В итоге технология изготовления сосудов была значительно изменена, удешевлена, а качество изделия повышено. Это исследование проводилось в цехах Авиационного научно-технического комплекса им. А.Н. Туполева. С этим же прибором были сделаны первые выезды на строящуюся Курскую АЭС и Астраханский газоперерабатываюший завод, где измерялись сварочные напряжения в реальных конструкциях в трудных климатических условиях. В сотрудничестве с Конструкторским бюро им. С.А. Лавочкина была усовершенствована технология сварки и режимов термической обработки сварных соединений ряда алюминиевых сплавов, а также выполнена экспертная работа по установлению причин саморазрушения корпуса одного из космических аппаратов во время хранения.

На основе проведенных исследований создано несколько видов портативных голографических систем для измерения напряжений под общим названием ЛИМОН — лазерно-интерферометрический метод определения напряжений, и с помощью этих систем выполнена большая работа, как плановая, так и экспертная, по измерению остаточных напряжений в различных технических объектах на заводах и полигонах. Накопленный опыт использовался при создании каждой следующей измерительной системы.


9. Голографические диски HVD   1. Общие сведения о голографических дисках

 

На смену уходящим поколениям оптических дисков (CD, DVD, BR(HD)-DVD, FVD, EVD, UDO) пришло новое поколение — HVD (Holographic Versatile Disk) — многоцелевые голографические диски, кардинально отличающиеся от всех вышеперечисленных способом оптического хранения информации.

Существуют две конкурирующие технологии голографической записи от фирм Optware (Япония) и Inphase Techologies (США). За Optware стоят CMC Magnetics, Fuji Photo Film, Nippon Paint, Pulstec Industrial Toagosei, Toshiba, Panasonic, Intel Capital и Sony, а за Inphase Techologies — Hitachi-Maxell, Bayer MaterialScience и Imation.

Характеристики HVD-дисков и приводов, текущие и планируемые (в процессе совершенствования технологий могут меняться):

Inphase-Techologies:

·           Объём — до 1,6 Терабайта (первые диски будут иметь объем 300 а затем 800 Гигабайт).

·           Плотность записи — 350 (и даже уже 515) Гбит на квадратный дюйм.

·           Скорость записи-считывания информации — до 960 Мбит/с (первые диски — 160 а затем 640 Мбит/с). Запись или считывание 1 миллиона бит за раз.

·           Скорость случайного доступа в режиме чтения — 200 мс

·           Диаметр диска — 5,25 дюйма (130 мм, на 10 мм больше обычных CD)

·           Толщина диска — 3,5 мм. (толщина основания — 1 мм, толщина записывающего слоя 1,5 мм, толщина защитного слоя — 1 мм.)

·           Длина волны лазера — 405 нм (синий). Носители поддерживают 400-410 нм.

·           Длительность хранения информации — 50 лет.

·           Стоимость диска на начальном этапе будет порядка 100 долларов, а привода — порядка 3000.

Optware:

·           В отличие от классического (двухосевого), Optware применила метод поляризованной коллинеарной голографии (оба луча, опорный и информационный, проходят через одну линзу, а для того, чтобы лучи не мешали друг другу, их поля развернуты друг относительно друга, т.е. лучи по разному поляризованы). Эта технология также обещает совместимость с предыдущими поколениями оптических дисков за счет работы красного лазера, использующегося при работе с голографическим диском для управления сервоприводом. Кроме того, такая оптическая система компактнее классической.

·           Объём — до 3,9 Терабайт (первые диски будут иметь объем 100, 200, 500 а затем и 3,9 Тб при расстоянии между центрами перекрывающихся голограмм 18, 13, 8 и 3 мкм соответственно).

·           Диаметр диска — 120 мм (как у обычных CD).

·           Длина волны лазера — 532 нм (зелёный) для данных и 650 нм (красный) для сервосистемы и для чтения предыдущих форматов оптических дисков.

·           Размер страницы данных на пространственном световом модуляторе — 3 мм, размер одного пикселя страницы — 13,7 мкм

·           Диаметр страницы данных на носителе — 200 мкм.

И тот и другой тип оптическтих дисков планируется размещать в защитный картридж. Таким образом, внешне они будут напоминать пятидюймовые дискеты.


2. Технология хранения информации

Диски названы голографическими потому, что страницы бинарных данных записываются на них способом, схожим с записью голограмм. Причем, для хранения данных применяются не плоские голограммы, расположенные на поверхности фоточувствительного слоя оптического диска, а объемные, занимающие некоторую толщину фоточувствительного слоя диска. Заметьте, что речь не идёт о послойном хранении информации! Вся информация записана всего лишь в одном фоточувствительном слое диска!

Записанные на диск страницы не являются голограммами в полном смысле этого слова. На диске фиксируется информация не рассеянного светового фронта, излучаемого во все стороны изображением страницы данных, а уже плоская, необъёмная световая информация, сфокусированная линзой. Тем не менее, запись сфокусированной страницы происходит, как и запись голограмм, за счёт интерференции, что даёт право называть записанную информацию, скажем, объёмной голограммой плоского светового фронта.

Почему для хранения информации стали применяться объемные голограммы? Не проще ли было осуществить обычную оптическую запись, расположив данные на нескольких слоях оптического диска? Оказывается у объёмной голограммы есть важное преимущество — способность к мультиплексированию (которого, кстати, нет у обычных плоскостных голограмм). Мультиплексирование — это способность хранить несколько разных слепков данных практически в одном и том же объёме записывающего вещества.

Мультиплексирование достигается за счет изменения угла наклона прожигаемых поперёк объёмного фотослоя плоскостей, являющихся элементарными кирпичиками записываемой информации (т.н. брэгговских плоскостей). Этот способ позволяет достигать чрезвычайно высокой плотности записи, не увеличивая до нереальных величин точность считывающего и записывающего устройств. Для записи или считывания той или иной страницы данных достаточно изменить лишь угол подсветки голограммы.

Кроме мультиплексирования за счет изменения угла опорного луча существуют еще два теоретически простых способа:

1.         За счёт изменения длины волны;

2.         За счёт сдвига фазы опорного луча.

Однако все вышеописанные способы требуют сложных оптических систем и толстых, толщиной в несколько миллиметров, носителей. Это затрудняет их коммерческое применение, по крайней мере, в сфере обработки информации. Поэтому были разработаны ещё три метода мультиплексирования:

1.         сдвиговое;

2.         апертурное;

3.         корреляционное.

Они основаны на использовании изменения положения носителя относительно световых пучков. При этом сдвиговое и апертурное мультиплексирование используют сферический опорный пучок, а корреляционное — пучок еще более сложной формы.

С целью еще более высокого уплотнения данных помимо мультиплексирования страниц применяется наложение книг. Суть наложения книг в том, что мультиплексированные массивы страниц (книги) записываются внахлёст друг на друга, как показано на рисунке ниже. Естественно, что с увеличением количества записанных страниц, и плотности наложения книг общая прозрачность голограммы падает. Поэтому степень плотности ограничивается способностью аппаратуры различать информацию на каждой отдельной странице.

Еще одним плюсом описываемой технологии является возможность удерживать точность оборудования на приемлемом для массового изготовления уровне. Страницы информации после их формирования уменьшаются чисто оптическим способом — всего лишь с помощью линзы, а при восстановлении подобной же линзой увеличиваются до размера считывающего устройства.

Кроме того, голографический способ хранения позволяет значительно повысить скорость доступа к ней, поскольку обращение для чтения или записи происходит единовременно ко всей странице данных, а каждая такая страница может содержать до миллиона бит и более.

  3. Запись и считывание голограммы оптического диска

Запись бинарных данных в голограмму происходит следующим образом.

1.         Лазерный луч разделяется на два луча с помощью полупрозрачного зеркала. Таким образом мы получаем два луча, имеющих абсолютно одинаковую длину волны и поляризацию.

2.         Один из лучей проходит сквозь пространственный световой модулятор — плоский трафарет, где прозрачные ячейки соответствуют единичным значениям бита а непрозрачные — нулевым. Далее, информационный луч, фокусируясь линзой, падает на фоточувствительный слой диска. Замечу, что в отличие от описываемого метода, при записи настоящей голограммы луч не фокусируется, что позволяет каждой точке фоточувствительного слоя получить волны от всех точек объекта. При сохранении бинарной информации этого не требуется.

3.         Второй (опорный) луч под некоторым углом направляется в ту же область диска, куда падает первый луч, чтобы они пересеклись в толщине фоточувствительного слоя. Поскольку лучи имеют одинаковую длину волны и поляризацию, то происходит явление интерференции (сложение амплитуд волн), в результате которого в местах, где фазы световой волны совпали, амплитуды волн увеличились и прожгли фоточувствительный слой.

Если мы представим пересекающиеся световые волны в трехмерном пространстве, то поймем, что двигаясь, они образовывают трёхмерные стоячие волны, которые прожигают брэгговские плоскости поперёк фоточувствительного слоя. Размер плоскостей определяется размером ячейки трафарета, уменьшенным фокусирующей линзой, толщиной фоточувствительного слоя и углами обоих лучей по отношению к фоточувствительному слою. Они похожи на зеркала разной прозрачности, и при их освещении опорным лучом они частично отражают свет в направлении продолжения бывшего информационного луча, шедшего через фокусирующую линзу от трафарета. В результате с обратной стороны голограммы рассеивается световой фронт картинки трафарета, как будто он идёт непосредственно от него.

Таким образом, считывание данных из голограммы происходит так:

1.         Опорный лазерный луч той же длины волны и с того же угла, что и при записи, падает на голограмму.

2.         Отражаясь от полупрозрачных зеркал, образованных брэгговскими плоскостями голограммы, луч рассеивает с обратной её стороны световой фронт, содержащий сфокусированное изображение трафарета, который был записан на неё ранее.

3.         Рассеянный световой фронт трафарета фокусируется линзой на массиве датчиков и переводится в цифровой код. Замечу, что при воспроизведении настоящей голографии световой фронт не фокусируют.

Отличие метода поляризованной коллинеарной голографии (Optware) от классической технологии (Inphase Technologies)

На одной из выставок Optware показала следующие сравнительные схемы, подчеркнув компактность своего метода:

Однако на деле поляризованная коллинеарная схема выглядит несколько иначе. На сайте самой Optware опубликована гораздо более сложная схема, тогда как эскиз привода с сайта Inphase Technologies выглядит значительно проще:

Всё это говорит об очередной войне стандартов. Схемы привода и диска от Inphase Technologies объективно выглядят проще для понимания. На первый взгляд, Optware перемудрила со своим методом. Но он даёт определённые плюсы.

Например, за счёт того, что диск не просвечивается насквозь, имеется возможность в перспективе делать двухстороннее нанесение информации (двусторонний диск), что в 2 раза повысит его ёмкость. Красный лазер, отвечающий за работу сервопривода (фокусировку) может использоваться для чтения обычных дисков, то есть сохраняется обратная совместимость устройства с прежними стандартами CD и DVD.

Ниже представлена схема записи голограммы по методу Optware:

Совмещающий оптический вращатель, состоящий из двух частей и стоящий непосредственно перед линзой, одной частью поворачивает на 45 градусов полярность опорного луча в одну сторону, а другой частью полярность информационного луча в другую сторону, одновременно разделяя эти лучи. В результате, изначально отличающиеся полярностью на 90 градусов лучи, приобретают одинаковую полярность и, как следствие, способность интерферировать друг сдругом, что они и делают, пересекаясь после линзы.

Исходя из рисунка можно сделать вывод, что в методе Optware применено мультиплексирование пикселей одной страницы вместо мультиплексирования самих страниц, как это делается у Inphase Technologies. Данная информация проверяется…

К качестве детекторов, считывающих информацию, проецируемую голограммой, используются КМОП-матрицы, используемые сейчас в некоторых моделях цифровых фотокамер.

Пространственные световые модуляторы, формирующие информационную страницу при записи данных — это массивы микрозеркал и ферроэлектрических модуляторов, применяющихся в цифровых проекторах и телевизорах.

В качестве материала для носителя информации использована двухкомпонентная полимерная система. Один из ее компонентов формирует сетку, где растворен второй компонент, обладающий светочувствительными свойствами. При записи информации последний под воздействием света полимеризуется, из-за чего возникает градиент концентрации неполимеризованного компонента, и начинается его диффузия. Результатом всего этого процесса является образование структуры с переменным индексом отражения, колебания которого как раз и несут в себе записанную информацию.


ЗАКЛЮЧЕНИЕ

Таким образом, согласованные усилия многих исследователей позволили накопить ряд сведений и фактов о свойствах трехмерных голограмм. За этими на первый взгляд разрозненными фактами достаточно отчетливо вырисовывается то единое явление природы, которое лежит в их основе. Оказывается, что материализованная объемная картина волн интенсивности способна воспроизводить волновое поле со всеми его параметрами — амплитудой, фазой, спектральным составом, состоянием поляризации и даже с изменениями этих параметров по времен.

Однако общая картина этого явления пока еще далека от завершения. И дело здесь не только в том, что в ряде случаев мы не знаем полностью набор отображающих свойств некоторых видов голограмм. Есть все основания считать, что будут открыты новые неожиданные оптические свойства голограмм.
Вполне вероятно, Что ряд новых эффектов будет обнаружен при применении светочувствительных материалов, обладающих специфическими свойствами, подобно тому как применение резонансных и поляризационных сред открыло возможность записи временных и поляризационных характеристик волновых полей. И наконец, прецедент объединения голографии и нелинейной оптики в динамическую голографию показывает, что внесение идей голографии в смежные с ней области знаний может привести к появлению совершенно новых направлений.


Литература

1. Введение в когерентную оптику и голографию: Учеб. пособие для физ.- мат. фак. пед. ин-тов.-Минск: Выш. шк.,1985.-144 с. Шепелевич В. В.

2. Оптическая голография т.1 С.Б. Гуревич, Г. Колфилд.

3. Оптическая голография т.2 С.Б. Гуревич, Г. Колфилд.

4. Оптика. Учебное пособие для вузов. М., “Высшая школа”, 1977г.

5. Интернет:

А) «Голографическое телевидение» Подборка статей. http://tvzone.city.tomsk.net/

Б) «Принципы голографии», В.В. Слабко, 1997г. http://www.pereplet.ru/


Информация о работе «Голография»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 54126
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
54282
0
21

... ее содержанием и условиями съемки. При установке света необходимо учесть и блик от стекла. Изобразительные голограммы находят все большее применение в экспозициях музеев. Есть и еще один аспект изобразительной голографии - голографический портрет, для получения которого помимо выше сказанного приходится учитывать особенности импульсных лазеров и требования техники безопасности, когда ...

Скачать
40610
0
6

... 1024 голограммы, каждая из которых занимает площадь в один квадратный миллиметр. Одна голограмма— страница книги, одна пластинка — целая большая книга. Многообещающим является применение голографии при распознавании образов и символов, что позволит создать читающие автоматы, обладающие большой надежностью. Голографические устройства с использованием звуковых радиоволн совместно со световыми ...

Скачать
105404
0
19

... перемещений лежит от долей микрона до нескольких миллиметров. Голографическая интерферометрия и спекл-интерферометрия являются двумя широкими областями, используемыми для обнаружения перемещений методами когерентной оптики. Кратко рассмотрим каждую из них, чтобы иметь возможность сравнивать их между собой. Голографическая интерферометрия основывается на достоинстве голографии (т. е. возможности ...

Скачать
40017
0
10

... В залежності від вибору матеріалу таке середовище може бути або реверсивним, або володіти властивістю довготривалої пам’яті. З другого боку, в ряді випадків фоторефрактивний ефект може виявитися лімітуючим фактором для багатьох застосувань. Наприклад, при експлуатації електрооптичних і нелінійних оптичних пристроїв у ряді випадків необхідно обмежувати величину інтенсивності вхідного світлового ...

0 комментариев


Наверх