Введение
Когерентная оптика может выполнять два типа операции в биологии и медицине. Во-первых, она может производить операции, которые можно осуществлять и другими способами. Ее можно использовать для обработки данных, распознавания патологических тканей или обнаружения движения объекта. Разумеется, не все, что может быть сделано средствами когерентной оптики, должно быть выполнено с ее помощью. Трудности заключаются в демонстрации преимуществ когерентной оптики перед некогерентной (которая часто дешевле, удобнее и более естественна) или перед цифровыми методами. Когерентная оптика будет целесообразной только там, где необходимость ее использования достоверно установлена. Во-вторых, когерентная оптика может производить операции, которые нельзя осуществить другими методами, например голографическое формирование изображений и обнаружение малых смещений с помощью голографии. Проблема в этом случае состоит в том, чтобы показать, что такие операции нужны.
При переходе от идеи к общепринятому практическому использованию любое применение когерентной оптики должно проходить три стадии. Мы назовем эти стадии как «доказательство», «техника» и «внедрение». На первой стадии мы должны выяснить не то, «может ли данная процедура быть выполнена посредством когерентной оптики», а «должна ли эта процедура выполняться с помощью когерентной оптики». При этом в свою очередь встают два вопроса. Первый: «Действительно ли предлагаемую операцию стоит выполнять?» и второй: «Является ли когерентная оптика наилучшим средством для этого?». До тех пор пока операция не является действительно необходимой, она не будет иметь значительного успеха. Действительно ли медицина нуждается в записи трехмерных изображений людей? Если нет, то голографическое формирование изображений тела не будет успешным. Даже в том случае, если и необходима операция, когерентная оптика может являться всего лишь одним из способов ее выполнения. В случае обработки трансаксиальных томографических изображений альтернативными подходами, заслуживающими внимания, представляются цифровые методы и некогерентиая оптическая обработка. Когерентная оптика должна доказать, что она является лучшим (по какому-либо критерию) способом. Если когерентный оптический метод проходит оба теста на стадии доказательства, он может перейти в техническую стадию. Здесь проблема заключается в доведении очень сложной когерентной оптической системы до уровня падежного прибора, управлять которым можно без специального знания когерентной оптики. Третья стадия является последним препятствием и самым сложным, так как здесь появляются многие нетехнические моменты.
Подавляющее большинство методов когерентной оптики находится на первой стадии. Это не означает, что они не приведут к окончательному признанию. Разумеется, некоторые приведут, а некоторые нет. В настоящей главе делается попытка дать обзор различных применений, исследованных в последнее время.
Мы начнем с наиболее очевидных применений и постепенно будем переходить к менее очевидным. Таким образом, мы начинаем с рассмотрения формирования когерентного оптического изображения (микроскопического и макроскопического, трехмерного и двумерного) и перейдем к формированию неоптического изображения с использованием когерентного света (в акустике и радиологии). Так как очень многое здесь включает формирование трехмерного изображения и различные формы томографии, то в конце главы дается приложение, связывающее все эти понятия.
Следующей областью нашего исследования будет обработка сигналов, которая включает улучшение изображения и обработку данных, полученных другими средствами, например электрокардиограмм, электроэнцефалограмм. Затем мы рассмотрим представление изображений — чрезвычайно важное использование когерентной оптики. Когерентную оптику можно использовать также для выделения или воспроизведения некоторых характеристик объекта (размеров, контуров, движения и т.д.), этому посвящен один раздел. Последним из рассматриваемых применений является распознавание образов. Здесь имеется очень большой материал, так что для получения общего представления деталями придется пренебречь.
1. Формирование оптического изображения в когерентном свете
Биология и медицина предполагают исследование объектов, которые можно изучать в течение длительного промежутка времени. В случае если объект не удобен для хранения, мы стремимся записать его изображение в виде, удобном для хранения. В этом смысле особенно целесообразными оказываются когерентные оптические методы. Приложение, посвященное формированию трехмерных изображений и томографии, будет особенно полезным после прочтения всего раздела по формированию когерентного оптического изображения.
1.1 Формирование изображения в оптическом микроскопе
Микроскопия издавна имела глубокое влияние на развитие медицины и биологии. Не удивительно, что именно микроскопия привела Аббэ [1.1] в 1873 г. к когерентной обработке оптических изображений и Габора [1.2] в 1948 г. к голографии. Использование фазовой модуляции в микроскопии известно настолько хорошо и развивается так быстро, что это могло бы потребовать полной обзорной главы. В биомедицинскую практику только в настоящее время внедряются разработки, вытекающие прямо или косвенно из габоровского метода восстановления волновых фронтов. Остановимся подробнее на этом вопросе.
Голография может иметь связь с микроскопией в трех аспектах. Во-первых, она может быть способом микроскопии. Во-вторых, она может быть вспомогательным средством в обычной микроскопии, обеспечивающим стационарную копию быстро изменяющегося оптического объекта для последующего исследования. В-третьих, ее можно сочетать с обычной микроскопией с целью образования гибридной системы с вытекающими отсюда преимуществами, характерными для каждой из них.
Микроскопия средствами голографии была впервые описана Габором [1.2], который предложил запись волнового фронта в невидимой (коротковолновой) части спектра и восстановление его более длинными (видимыми) волнами. Таким образом, сформированные изображения должны были бы иметь поперечное увеличение, равное отношению длин волн. Позднее Лейт и Упатниекс [1.3] уточнили, что этот вид голографическон микроскопии является только одним из примеров общего положения, когда запись волнового фронта происходит при одних условиях (длина волны, положение опорного точечного источника и т.д.), а восстановление его — при других. Таким образом, варьируя геометрические параметры схемы при записи и восстановлении, можно контролировать и менять увеличение изображения, даже если на обоих этапах используется свет одной длины волны.
Микроскопия голографически зарегистрированных волновых фронтов является привлекательной идеей с многих точек зрения. Объект может меняться так быстро, что медленное исследование средствами обычной микроскопии затруднено или вообще невозможно. В таких случаях голография необходима. Изображение может быть изучено любым известным микроскопическим методом (светлое поле, темное поле, фазовый контраст, интерференция и т.д.), удобным для исследователя. Выбор метода можно сделать a posteriori.
Обычная микроскопия встречается с некоторыми трудностями, которые можно уменьшить, воспользовавшись голографией. Например, неудовлетворительная коррекция линз в обычной микроскопии лимитирует качество изображения. В голографии можно скорректировать любые недостатки линз, если они известны. Таким образом, голографию можно использовать для получения дифракционно-ограниченных изображений при больших относительных отверстиях и низкокачественных объективах микроскопа. Одним из способов достижения этого является использование голограммы в качестве корректирующего элемента для превращения реального импульсного отклика объектива в необходимый. Другой способ [1.4] состоит в пропускании восстановленного волнового фронта обратно через линзу низкого качества с целью формирования неувеличенпого дифракционно-ограниченного изображения объекта для последующего исследования с помощью обычных микроскопов с лучшими объективами.
Рис. 1.1. Схема голографической записи увеличенного изображения
Рассмотрев эти три области голографической микроскопии достаточно глубоко, чтобы увидеть их цели и взаимосвязи, обратимся теперь к нескольким иллюстрирующим примерам.
Каким образом записываются объекты голографически для последующего микроскопического изучения? Ответ на этот вопрос будет: «Любым способом, при котором можно зарегистрировать объект при достаточно большом относительном отверстии для получения, требуемого разрешения». Это не всегда легко сделать. Использовались два подхода.
В первом подходе записывались голограммы изображений, сформированных объективами микроскопов с большим относительным отверстием. Это несколько облегчает получение голограммы с требуемым относительным отверстием. Чтобы записать изображение с высоким разрешением, мы должны видеть объект под широким углом, или, что- то же самое, использовать систему с большим относительным отверстием. Тогда поперечное разрешение равняется приблизительно Nл, где л — длина волны света, формирующего изображение. В таком случае достижение высокого разрешения влечет за собой требование большой величины относительного отверстия. Это положение иллюстрируется рис. 1.1. Восстановленный волновой фронт можно наблюдать при помощи обыкновенного окуляра, если восстанавливающий пучок повторяет в точности опорный пучок. Если восстанавливающий пучок имеет обратное направление, восстановленный фронт можно наблюдать, пропуская пучок обратно через объектив для автоматической коррекции. Автоматическая коррекция имеет место также в случае, если вместо обычного объекта регистрируется точечный объект. Таким образом, сформированная голограмма превращает каждую отдельную точку объекта в копию референтной точки. В этом случае результирующее изображение образуется из более резких, а не размытых точек. Все эти методы успешно использовались в топографических лабораториях. Одним из наиболее занимательных применений являлась киноголографическая микроскопия [1.5], когда голографический кинофильм снимался через микроскопический объектив. Так как регулировку фокусировки можно осуществлять a posteriori, имеется возможность наблюдать за объектами, которые обычно выходят из фокуса. Действительно, возможность перефокусировки дает трехмерную информацию о положении объекта. Рис. 1.2 иллюстрирует некоторые преимущества киноголографической микроскопии: мы можем иметь как большую скорость кадров, так и время для коррекции фокуса в каждом кадре, так как фокусировку можно произвести на этапе восстановления изображения.
Во втором подходе используется безлинзовое формирование изображения при большом относительном отверстии. Это означает, что объект должен находиться настолько близко к голографической записывающей среде, чтобы необходимый участок регистрирующей среды получал информацию от любой части объекта. Это в свою очередь влечет за собой проблемы, связанные с установкой опорного и освещающего объект пучков, а также с положением регистрирующей среды. Было предложено много методов для достижения этого. На рис. 1.3 показано, как записывают нормальные голограммы объектов. Проблемы, связанные с приближением записывающей среды к объекту, не просты. На рис. 1.4 показано, каким образом объектный и опорный пучки (но не освещающий пучок) могут падать на записывающую среду даже в случае, если объект и записывающая среда находятся на одной оси. Ясно, что обычное расположение (рис. 1.3) не может быть использовано для получения желаемого результата, так как нет возможности осветить объект или ввести опорный пучок. Макмахоном и Колфилдом было предложено несколько решений этой проблемы [1.6].
Другой, еще более простой метод был разработан Томпсоном и др. [1.7] для исследования микроструктуры капель тумана, однако его можно использовать и в случае биологических объектов. Луч от импульсного лазера падает на частицы вблизи фотографической пластинки. Дифрагированный свет от частиц интерферирует с недифрагированным светом, образуя голограмму. В этом случае, так же как и при оригинальной габоровской голограмме [1.2], на стадии восстановления наблюдались три перекрывающихся волновых фронта, соответствующих непродифрагированному восстанавливающему лучу, мнимому изображению объекта и действительному изображению объекта. Часто одно из этих изображений совпадало с расфокусированным изображением другого (с сопряженным изображением).
Томпсон и др. показали, что при коллимированиом опорном и восстанавливающем пучках и голограмме, находящейся в дальней области, одно изображение можно удалить на бесконечность, т.е. наблюдать так далеко от фокуса, что оно будет пренебрежимой помехой при наблюдении другого изображения. За одну экспозицию лазерным импульсом записывают формы и положения всех частиц вблизи записывающей среды. По чисто техническим причинам (см. приложение) мы не можем наблюдать все частицы одновременно. Однако мы можем исследовать их по сечениям. При воспроизведении наблюдаются изображения частиц как в фокусе, так и вне его. Передвигая экран для наблюдения или видикоп на различные расстояния от голограммы, мы можем наблюдать, как изображения входят и выходят из фокуса. Изображение находится в фокусе, когда его размеры и окружности вокруг него минимальны.
Рис. 1.2.
Фотографии изображений, восстановленных с одного кадра микрокиноголограммы. Показана различная глубина фокуса, что можно видеть по появлению и исчезновению капилляров из фокуса. Можно видеть пузырьки, проходящие по центральной артерии (С разрешения М. Е. Кокса, Университет Мичиган-Флинт).
Рисунок 1.3. Обычная схема записи голограмм
Рис. 1.4 Предпочтительная схема записи голограмм
Было реализовано несколько интересных биомедицинских применений. Один из наиболее наглядных примеров следует из работы Ботнера и Томпсона [1.8] по волокнистым материалам, которые из-за своих размеров не фильтруются нашими дыхательными органами и вследствие этого являются потенциально токсичными. На рис. 1.5,а показана голограмма. Буквы Л, В, С указывают местоположения в плоскости х—у трех частиц, находящихся на различных глубинах. На вставках б, в и г показаны сами частицы в плоскостях наилучшей фокусировки. Таким образом, рис. 1.5 демонстрирует, как осуществляется голографический анализ микрочастиц. Каждая дифракционная картина на голограмме есть указатель частицы, находящейся на одной оси с опорным пучком в момент излучения импульса лазера. Освещая эту картину (голограмму отдельной частицы) копией опорного пучка, только противоположно направленной, мы формируем точное действительное изображение частицы (подверженное дифракционным ограничениям, накладываемым размером голограммы, размером частицы и расстоянием частицы от пластинки). Если бы объектом была математическая точка на расстоянии d от записывающей среды, ее голограмма была бы похожа на френелевскую зонную пластинку с фокусным расстоянием d.
Таким образом, имеем концентрические кольца с радиусом:
,
где п — целое число, а л — длина волны лазера.
Рис. 1.5. Голограмма Фраунгофера (а) волокнистых частиц и изображения отдельных частиц (б, в, г), восстановленные с участков голограммы А, В, и С соответственно (С согласия Ботнера и Томпсона [1.8]).
Эффективный диаметр Dэфф голограммы ограничен из-за того, что при некотором п расстояние между соседними кольцами становится слишком маленьким для разрешения. При восстановлении поперечное разрешение ограничивается дифракцией:
.
Для практических целей можно разрешить детали, сравнимые с л. Можно обнаружить меньшие частицы, но нельзя определить их форму. Изображениями их являются просто кольца диаметром . К сожалению, изображение выходит из фокуса таким образом, что на глубинах, отличных от d, мы все еще наблюдаем создаваемую частицей картину. Мы знаем, что находимся на нужной глубине, если изображение имеет минимальный размер и, в идеале, не имеет структуры концентрических колец. Таким образом, передвигают проекционный экран или видикон на различные расстояния с тем, чтобы найти истинное значение d. Такая операция может быть легко автоматизирована. Все эти методы требуют лазерного освещения, а оно приводит к специфическому эффекту лазерных спеклов (зернистой структуры лазерного освещения). Природа лазерных спеклов и возможности борьбы с ними широко исследовались в течение многих лет, и существует много «решений» (значительно различающихся по сложности и практичности) [1.9, 10]. Многие из этих решений пригодны только в особых случаях, для которых они были разработаны, и ни одно из них не является универсальным средством подавления спеклов. Возможно, эти вездесущие пятнышки являются первичным барьером на пути более широкого применения голографической микроскопии. На рис. 1.6 показано изображение спеклов до и после операции их подавления. В данном случае спеклы были устранены (минимизированы) просто с помощью формирования изображения при большой числовой апертуре. Обычно размеры спеклов дифракционно-ограничены, они становятся меньше по мере увеличения числовой апертуры.
... матрице, имеющей частично историческую и социокультурную обусловленность. ГЛАВА 3 Логика и математика как связующее звено между философией и наукой Философский стиль мышления современного естествоиспытателя может быть представлен на основе идей Дж. Смарта и В. Куайна [1] в виде сферы взаимодействия классических и современных философских идей и теоретического естествознания в ...
... философии - особенно с методологических позиций материалистического понимания истории и материалистической диалектики с учетом социокультурной обусловленности этого процесса. Однако в западной философии и методологии науки XX в. фактически - особенно в годы «триумфального шествия» логического позитивизма (а у него действительно были немалые успехи) - научное знание исследовалось без учета его ...
... , то необходимость в дополнительной линии передачи вообще отпадает при передаче энергии на сотни километров, поскольку вся излучаемая энергия может быть перехвачена приемным устройством с апертурой приемлемых размеров. В диапазоне субмиллиметровых волн отношение допустимых размеров апертур к длине волны заметно уменьшается, тем не менее в ряде случаев подобные квазиоптические линии передачи могут ...
... школа, 1988. 10. Артюхов В.Г., Ковалева Т.А., Шмелев В.П. Биофизика. Воронеж: Воронежский гос. ун-т 1994. 11. Антонов В.Ф. Биофизика. VI.: Арктос-Викапресс, 2000. 12. Дополнительная 13. Механика и биомеханика 14. Никитин E. VI. Теоретическая механика. VI.: Наука. 1968. Александер Р. Биомеханика. VI.: Мир. 1970. 15. Журавлева А.И., Iраевская И.Д. Спортивная медицина и лечебная ...
0 комментариев