2.1. Торцевий волоконно-оптичний інтерферометр Фабрі-Перо

Розглянемо принцип дії торцевого волоконно-оптичного інтерферометра Фабрі-Перо, блок-схема якого зображена на рис.2.1.

Рис.2.1. Блок-схема торцевого волоконно-оптичного інтерферометра Фабрі-Перо.

Випромінювання лазерного діода 1 вводиться у волоконний світловод 2 і через розвітлювач 3 передається на волокно 4. При цьому частина випромінювання відбивається від торця волоконного світловода 4, а інша його частина висвічується в повітря, відбивається від дзеркала 5 і повертається назад у волоконний світловод 4. Промінь, відбитий від торця волоконного світловода, інтерферує із променем, відбитим від дзеркала, і на фотоприймачі 5 реєструється інтенсивність випромінювання, що змінюється періодично в залежності від відстані x0 між торцем світловода і дзеркалом:

При цьому зсув дзеркала на половину довжини хвилі світла змінює різницю фаз інтерферуючих променів на 2π, що відповідає одному періодові варіації інтенсивності випромінювання на фотоприймачі.

З іншої сторони ніяке реальне джерело оптичного випромінювання не є ідеально монохроматичним, а отже він має обмежену довжину когерентності. У випромінюванні лазерного діода звичайно присутні кілька мод, а сумарна ширина спектральної лінії дорівнює приблизно 3-5 нм. Довжина когерентності lс зв'язана із шириною спектра Dl у такий спосіб:

 lс= l2/Dl.

Із шириною спектра випромінювання (і довжиною когерентності lс) зв'язана видність (контрастність) інтерференційної картини. При збільшенні різниці ходу інтерферуючих променів видність інтерференційної картини зменшується. При досягненні різниці ходу, рівній довжині когерентності, видність перетворюється в 0.

На рис.2.2 показана залежність інтенсивності інтерференції двох інтерферуючих від їхньої різниці ходу l.

Рис.2.2. Залежність інтенсивності інтерференції двох інтерферуючих від їхньої різниці ходу l.

Ця залежність описується формулою:

де І0 – інтенсивність кожного з інтерферуючих променів, l - довжина хвилі світла.

Приведена вище формула описує повну інтерференцію двох променів однакової інтенсивності. У загальному випадку їх інтенсивності можуть бути істотно різними (наприклад, у волоконно-оптичному інтерферометрі, де промінь, відбитий від торця, виявляється на порядок більш слабким, чим промінь, відбитий від дзеркала і потрапив назад у волокно. У цьому випадку 100-процентна видність інтерференції не досягається навіть при нульовій різниці ходу інтерферуючих променів.

де φ - різниця фаз інтерферуючих променів, І1 і І2 - їх інтенсивності, g - ступінь когерентності.

У випадку волоконно-оптичного інтерферометра Фабрі-Перо І1 = R1І0 - інтенсивність світла, відбитого від відколу волокна; І2 = (1-R2)20 - інтенсивність світла відбитого від дзеркала і повернутого у волокно (R1 і R - коефіцієнти відображення торця волокна і дзеркала відповідно). У випадку кварцового волокна R1=0,04 - френелівський коефіцієнт відображення границі розділу кварц-повітря. Таким чином, інтенсивність світла, що ергіструється фотоприймачем, дорівнює:

У загальному випадку відсоток випромінювання, відбитого від дзеркала і повернутого у волокно, залежить від відстані між відбивачами. Це зв'язано з тим, що світло, що виходить з волокна, розходиться під деяким кутом і лише частина його, будучи відбитою від дзеркала, попадає назад у волокно і бере участь в інтерференції. Типова залежність оптичної потужності, що регіструється фотоприймачем, від відстані між відбивачами інтерферометра приведена на рис.2.3.

Далі розглянемо сигнал інтерферометра, що виникає в результаті відображення світла від вібруючої поверхні (резонатора). У результаті коливання резонатора, різниця фаз інтерферуючих променів змінюється в такий спосіб:

де l - довжина хвилі світла, x0 - амплітуда коливань резонатора. Це приводить до слідуючого виразу для інтенсивності світла, відбитого резонатором і торцем волокна:

де φ0 - різниця фаз інтерферуючих променів, коли резонатор знаходиться в незбуреному стані.

Рис.2.3. Залежність оптичної потужності, що регіструється фотоприймачем, від відстані між відбивачами інтерферометра.

Розкладаючи І(t) у ряд Фур'є ми знаходимо відповідні члени модуляції світла:

де Jіω) - функції Бесселя. Коли φω<<1 і φ0 = π/2+πk (k - ціле число), Jіω) дорівнює приблизно φω/2 і, тому, змінна компонент І(t) буде пропорційна зсувові резонатора з положення рівноваги: Іω~sіn(ωt).

Розглянемо ще випадок збудження резонатора зовнішньою силою (подібно випадку порушення коливань диффузатора динаміка під дією змінного струму, що протікає по його котушці). У цьому випадку коливання резонатора будуть залежати від частоти прикладеного впливу в такий спосіб:

де Q - добротність резонатора, ε0 - амплітуда резонансних коливань, η - залежний від частоти зсув фаз між прикладеним збудливим впливом і коливаннями резонатора ( η змінюється від 0 до π, коли ω змінюється від 0 до нескінченності). З цього рівняння видно, що амплітуда резонансних коливань у Q раз більше, ніж амплітуда коливань на низьких частотах (або при квазістатичному зсуві резонатора тією же силою).

2.2. Інтерферометр Маха-Цендера і багатомодовий інтеферометр

Інтерферометр Маха-Цендера (рис.2.4,а) містить два світловодних плеча. Одне з них є опорним (4), його прагнуть ізолювати від зовнішніх впливів; друге - сигнальним (5), тобто призначеним для цілей прийому. Когерентне випромінювання обох плечей зводиться в одному прийомному світловоді (6), у якому формується інтерференційний сигнал. Інтенсивність цього сигналу описується виразом

де φ1 і φ2 - фази світлових пучків, що пройшли опорне і сигнальне плечі, І1 і І2 - інтенсивності цих пучків. Як видно, збільшення фази випромінювання в сигнальному плечі перетвориться в зміну інтенсивності сигналу інтерференції, що може бути легко зареєстровано звичайним фотоприймачем.

В даний час конструкція фазових датчиків на основі схеми інтерферометра Маха-Цендера найбільш відпрацьована.

Рис. 2.4. Типи волоконних інтерферометрів: а - інтерферометр Маха-Цендера: 1 - лазер; 2 і 7- підвідний і приймаючий випромінювання світловоди; 3 і 6 - Y-развітлювачі; 4 і 5 - опорний і сигнальний світловоди, 8 - фотоприйомний пристрій; б - інтерферометр Фабрі-Перо: 1 - лазер; 2 і 5 - підвідні і приймаючі випромінювання світловоди; 3 -напівпрозорі дзеркала; 4 - волоконний резонатор, 6- фотоприйомний пристрій; в - багатомодовий інтерферометр: 1 - лазер; 2 - багатомодовый світловод, 3 - фотоприйомний пристрій.

Ще один одноволоконний інтерферометр, що в даний час досить добре розроблений, - багатомодовий показаний на рис.2.4,в. Він представляє світловод, у якому збуджують два або кілька типів направляючих променів (мод), що різняться фазовими швидкостями поширення. На виході зі світловода між цими променями виникає різниця фаз. Вона дорівнює

де Δnэф - різниця ефективних показників заломлення мод. Як видно, різниця фаз між модами змінюється при зміні довжини волокна. Тому змінюється і картина інтерференції мод (див рис.2.4, в, внизу), що і використовується для реєстрації.

Варто сказати, що в стандартних світловодах різниця між фазовими швидкостями мод мала ( Δnэф << nэф). Тому різниця фаз між ними в багатомодовому інтерферометрі росте повільно. Як наслідок - датчики на основі такого пристрою менш чуттєві до зовнішніх впливів, чим приймачі на основі інтерферометричних схем Маха-Цендера і Фабрі- Перо. Їхні переваги в простоті оптичної схеми, можливості використання недорогих низькокогерентних джерел, тобто, в низькій вартості.


РОЗДІЛ 3. ХІМІЧНІ СЕНСОРИ

 


Информация о работе «Волоконно-оптичні сенсори контролю шкідливих хімічних компонентів»
Раздел: Физика
Количество знаков с пробелами: 42173
Количество таблиц: 0
Количество изображений: 16

Похожие работы

Скачать
109443
15
38

... чено раніше, якщо вибрати правильний напрямок поширення хвилі, можна створити бездротової датчик температури. Середовище поширення міняється разом з температурою, впливаючи на дані на виході. Нижче наведені деякі найбільш загальні способи застосування датчиків акустичних хвиль. Термодатчик будується на термозалежності швидкості поверхневих хвиль, яка визначається напрямком і типом кристалічного ...

0 комментариев


Наверх