3.1. Загальні відомості про хімічні сенсори

Протягом всієї історії аналітичної хімії одна з найважливіших її задач складалася і полягає в тому, щоб установлювати зв'язок між складом і якою-небудь легко вимірюваною властивістю і використовувати виявлені закономірності, тобто ці зв'язки, для розробки способів визначення концентрації і відповідних пристроїв. До цих пристроїв відносяться і датчики, або хімічні сенсори, що подають пряму інформацію про хімічний склад середовища (розчину), у яку занурений датчик, без добору аналізованої проби і її спеціальної підготовки. Термін "хімічний сенсор" з'явився порівняно недавно. Успіхи в суміжних областях (фізика твердого тіла, мікроелектроніка, мікропроцесорна техніка, матеріалознавство) привели до появи нового напрямку в аналітичній хімії - хімічних сенсорів (ХС). Сенсорні аналізатори можуть працювати автономно, без втручання оператора, причому передбачається, що вони зв'язані із системами нагромадження й автоматизованої обробки інформації. Значення ХС і створених на їхній основі аналізаторів у контролі стану середовища існування й охороні здоров'я людини важко переоцінити.

3.2.Принципи роботи і пристрій хімічних сенсорів

ХС складається з хімічного селективного шару датчика, що дає відгук на присутність обумовленого компонента і зміна його змісту, і фізичного перетворювача (трансдьюсера) [6]. Останній перетворить енергію, що виникає в ході реакції селективного шару з обумовленим компонентом, в електричний або світловий сигнал, що потім вимірюється за допомогою світлочутливого і/або електронного пристрою. Цей сигнал і є аналітичним, оскільки подає пряму інформацію про склад середовища (розчину). ХС можуть працювати на принципах хімічних реакцій, коли аналітичний сигнал виникає внаслідок хімічної взаємодії обумовленого компонента з чуттєвим шаром, або на фізичних принципах, коли виміряється фізичний параметр (поглинання або відображення світла, маса, провідність). У першому випадку чуттєвий шар виконує функцію хімічного перетворювача. Загальна схема функціонування ХС зображена на рис. 3.1.

Рис.3.1. Схема роботи хімічного сенсора: P - хімічно чуттєвий шар, П - перетворювач сигналу, Е - електронний блок.

Для підвищення вибірковості на вхідному пристрої ХС (перед хімічно чуттєвим шаром) можуть розміщатися мембрани, що селективно пропускають частки обумовленого компонента (іонообмінні, діалізні, гідрофобні й інші плівки). У цьому випадку обумовлена речовина дифундує через напівпроникну мембрану до тонкого шару хімічного перетворювача, у якому формується аналітичний сигнал на компонент. На основі ХС конструюють сенсорні аналізатори - прилади, призначені для визначення якої-небудь речовини в заданому діапазоні його концентрацій. Ці аналізатори можуть мати малі габарити (іноді наближаються до розмірів калькулятора або авторучки). Оскільки в їхній конструкції відсутні деталі, що перетерплюють механічний знос, пристрої характеризуются досить тривалим терміном експлуатації (до року і більш). Об'єднані в батарею і підключені до комп'ютера, ХС здатні забезпечити аналіз складних сумішей і дати диференційовану інформацію про зміст кожного компонента. У сенсорних аналізаторах вбудовані мікросхеми дозволяють вводити виправлення на зміну температури, вологості, враховувати вплив інших компонентів середовища, проводити градуюровку і настроювання нульового значення на шкалі показів.

Оптичні ХС працюють на принципах поглинання світла, або відображення первинного світлового потоку, або виникаючої люмінесценції. Ці сенсори нечуттєві до електромагнітних і радіаційних полів і здатні передавати аналітичний сигнал без спотворення на великі відстані. Крім того, вони мають невисоку вартість у порівнянні з електрохімічними сенсорами (ЕХС) і можуть конкурувати з останніми, особливо у випадках, коли застосування ЕХС неефективне. З оптичних ХС перспективні сенсори на основі волоконної оптики.

У волоконно-оптичнихх сенсорах (ВОС) на торці світловода закріплюється реагентвміщуюча фаза (РВФ). При описі таких пристроїв іноді використовують термін "оптрод", що є комбінацією слів "оптика" і "електрод". Цим підкреслюється, що ВОС по своєму призначенню близький до електродів, у тому числі і до тих, на основі яких функціонують ЕХС. Однак по природі сигналу і механізмові відгуку вони зовсім відмінні. Характеристика матеріалу світловода визначає оптичний діапазон і відповідно аналітичні можливості всього пристрою. Якщо оптичне волокно виготовлене з кварцу, то такий оптрод працює в широкій області спектра, включаючи ультрафіолетову його частину. Для скловолокна область довжин хвиль охоплює лише видиму область спектра. Якщо оптоволокно виготовлено з полімерного матеріалу (такі пристрої мають невисоку вартість), то діапазон довжин хвиль, у якій працює ВОС, перебуває за межами >450 нм.

Оптосенсори можуть бути оборотними і необоротними [6]. Сенсор оборотний, якщо РВФ не руйнується при її взаємодії з обумовленою речовиною. Якщо частина реагенту споживається в ході визначення, сенсор працює необратимо. На рис.3.2 приведена схема формування відгуку оборотного ВОС для визначення pН середовища, заснованого на поглинанні світла. Пристрій такого сенсора є досить простим: два пластикових волокна вмонтовані в целюлозну трубочку, що містить барвник фіолетовий червоний, іммобілізований за допомогою ковалентного зв'язування на поліакриламідних мікрокульках. Крім цих мікрокульок усередину трубочки поміщені такого ж розміру кульки з полістиролу для кращого розсіювання світла. Через одне волокно світло від вольфрамового джерела випромінювання входить, а через інше виходить. Інтенсивність вихідного потоку світла вимірюється детектором, настроєним на відповідну область довжин хвиль. Пробка на торці трубочки утримує РВФ механічно і перешкоджає її взаємодії з обумовленим компонентом у торцевій частині. Подібний оптрод може бути використаний і для визначення концентрації O2. У цьому випадку сигнал зв'язаний з гасінням флуоресценції реагенту при взаємодії з киснем. Такого типу оптроди можуть бути використані і для визначення pН у живому організмі.

Необоротні оптроди через витрату РВФ мають обмежений термін служби. Однак його можна продовжити заміною РСФ на нову фазу. Стабільний сигнал від цих ВОС може бути отриманий лише в умовах стаціонарного масопереноса визначаємого компонента в зону його взаємодії з РВФ. Будь-яка перешкода, що порушує масоперенос, дає помилку в показаннях ВОС. На рис.3.3 показана схема роботи необоротного оптрода на кисень.


 

Рис.3.3. Схема роботи необоротного волоконно-оптичного сенсора на кисень.

Обумовлений компонент дифундує через селективну мембрану з відповідним розміром пор у порожнину, що містить іммобілізований флуоресціюючий барвник. Його світіння гаситься в присутності O2 пропорційно парціальному тискові кисню. Ступінь гасіння фіксується відповідним пристроєм. Якщо резервуар із РВФ досить великий, то споживання реагенту незначно і сенсорний пристрій може служити довго.

3.3.Волоконно-оптичний сенсор для контролю аміаку в повітрі

Плоскохвилеводний оптичний хімічний сенсор чотирьохшарової конструкції [6,7,8]: підкладка з плавленого кварцу, що відіграє роль посередника для введення світла в хвилевід через торець посередника; полімерний хвилевід з поліметилметакрилата товщиною 0,920 ± 0,014 мкм; чуттєвий шар - полідиметилсилоксан функціоналізований катіонами брильянтового зеленого (рис.3.4).

Рис.3.4.Чотирьохшарова конструкція плоскохвильового оптичного хімічного сенсора.

Зразки для вимірювання й обладнання. В якості підкладки можна використовувати диски плавленого кварцу діаметром 40 мм і товщиною 4 мм із відшліфованою бічною гранню. Товщина полімерних хвилеводів має бути рівною 100, 20 і 0,920 ± 0,014 мкм, ширина - близько 5 мм і довжина - 40 мм. Товщина полідиметилсилоксан (ПДМС) - плівки, визначена за спектрофотометрической методикою, склала 0.22 ± 0.02 мкм.

Вимірювальна система (рис.3.5) [9]. Джерело світла - твердотільний лазер з максимумом випромінювання 645 нм, фотоприймачі - ФЕП-106, спадання напруги на якому зчитувалось вольтметром У7-38, фотодіод ФД-256 і фотоприймач спектрофотометра СФ-46. Напруга живлення ФЕП: 1860 В від стабілізованого випрямляча ВР-22.

Рис.3.5. Вимірювальна система: 1 - зразок, 2- лазер, 3 - поворотний пристрій,

4 -фотоприймач, 5 - тримачі, 6 - діафрагма.

Для виявлення оптимального кута введення світла в зразок джерело світла закріплене на поворотному пристрої. Як аналітичний сигнал сенсора використана величина абсолютного сенсорного ефекту рівна різниці спадів напруги до і після вводу аміаку: ΔU = (U– U0 ); де U0 - значення фотовідгуку сенсора у відсутності аміаку, U - значення фотовідгуку сенсору в присутності аміаку.

Для дослідження сенсорних властивостей функціонального полімеру зразок поміщався у вимірювальну комірку і напускалась аміачно-повітряна суміш. Час повного циклу напуск-регенерація складав близько 18 хвилин (рис.3.6), що відповідає вимогам, пропонованим до засобів контролю повітря населених місць. Аналітичний сигнал (ΔU) зв'язаний з оборотним знебарвленням плівки чуттєвого шару, тобто зниженням його оптичної густини (А) у результаті взаємодії катіона брильянтового зеленого з молекулами аміаку (рис.3.7).

Рис.3.6. Повний цикл напуску аміачно-повітряної суміші.

Рис.3.7. Зміна спектру поглинання плівки ПДМС при взаємодії з аміаком.

Дослідження довгострокової стабільності сенсорних властивостей полімеру (16 місяців) (рис.3.8) показало стабільність роботи в плині перших 8 місяців (дрейф фонового сигналу (U0 - початкове значення фотовідгуку на повітрі) = 1%) [6]. Протягом наступних 8 місяців спостерігався ріст значення фотовідгуку сенсора на 50%, зв'язаний з поступовим знебарвленням барвника, що приводить до просвітління чуттєвої плівки ПДМС.

Рис.3.8. Часовий дрейф фонового сигналу сенсора.

Рис. 3.9. Кінетична залежність зміни аналітичного сигналу сенсора від концентрації аміаку в потоці аміачно-повітряної суміші.

На основі кінетичної кривої (рис.3.9) був побудований градуюровочний графік сенсора на аміак у діапазоні концентрацій 4-37 мг/м3 (рис.3.10) і розрахована межа виявлення, яка склала 1 мг/м.

Рис.3.9.Градуюровочний графік сенсора аміаку в макеті газоаналізатора.

Для подальших досліджень обрана плоскохвилеводна конструкція оптичного сенсора. Для збільшення чутливості аналізу був застосований тонкоплівковий полімерний хвилевід з поліметилметакрилата.

Визначений оптимальний кут введення світла в зразок, що відповідає максимумові інтенсивності вихідного з хвилеводу світла і рівний 360, причому як для різних фотоприймачів (дослідження проводилися на ФЕП-106, ФД-256 і фотоприймачі СФ-46) (рис.3.10), так і для різних товщин хвилеводів (рис.3.11).

 

Рис.3.10.Залежність інтенсивності світла, що виходить зі зразка, від кута його введення (при використанні трьох різних фотоприймачів).

Рис.3.11. Залежність інтенсивності світла, що виходить зі зразка, від кута його введення в торець підкладки (для різних толщин хвилеводів.

Отримано кінетичну криву зміни відгуку сенсора при напуску аміачно-повітряної суміші в діапазоні концентрацій 0,48 - 2.13 мг/м (мал.3.12) [6], на підставі якої побудований градуюровочний графік (мал.3.13) і розрахова межа виявлення аміаку сенсором Про = 0.02 мг/м3 в атмосферному повітрі, що говорить про можливості застосування сенсора для контролю аміаку у повітрі населених областей.

Для оцінки впливу інших газів - основних пріоритетних забруднювачів атмосфери (оксид вуглецю, сірководень, диоксид сірки) на аналітичний сигнал, були досліджені відгуки сенсора у відношенні перерахованих речовин. По отриманим даним побудовані градуюровочні графіки.


3.4.Волоконно-оптичний датчик іонізуючого випромінювання

Принцип дії датчика полягає в реєстрації світлового сигналу, що індукується в сцинтиляційному матеріалі іонізуючим випромінюванням і передається до фотоприймача по волоконному світловоду. Цим опто-волоконний датчик відрізняється від існуючих приладів, у яких сцинтилятор сполучений з фотоприймачем [10]. Переваги оптоволоконного датчика складаються в можливості розміщення прийомної апаратури поза зоною дії радіації й електромагнітних наведень. Мініатюрні розміри датчика роблять його дуже зручним для проведення вимірів з високою просторовою роздільною здатністю, причому у важкодоступних місцях, а також дозволяють створювати многоканальні системи.

За допомогою цього датчика можна досліджувати залежність корисного сигналу від гама поля і визначити величину сигналу стосовно радіолюмінісценції оптичного волокна (фону).

Конструкція датчика і розміри корпуса сцинтилятора (не більш 5 мм у діаметрі і 20 мм у довжину), визначилися з урахуванням передбачуваних вимірів [11] у спеціальних каналах реакторів типу ВВЄР і РБМК, а також у центральних гільзах тепловиділяючих зборок РБМК, призначених для розміщення датчиків енерговиділення.

Основним елементом датчика є радіаційно-стійке оптичне волокно із серцевиною з чистого кварцового скла, насиченого молекулярним воднем [12]. Захисне алюмінієве покриття волокна допускає нагрівання до 400 0С, не активується і не руйнується нейтронами. Випробовування на ядерному реакторі [13] показали, що такі волокна залишаються досить прозорими (наведене радіацією поглинання світла у видимому діапазоні не більш 0.5 дБ/м) при опроміненні до флюенса швидких (Е>0.1 Мев) нейтронів ~1018 н/см2 і гама дози ~ 20 МГр. Ще одна перевага цих волокон проявилася в багаторазово меншій радіолюмінісценції в порівнянні з іншими аналогічними зразками.

Для дослідів були взяті сцинтилятори з добре вивченими властивостями, а саме NaІ(Tl), CsІ(Tl), ZnS(Ag), p-терфенил у полістиролі і стильбен C14H12 [11]. Також була виміряна радіолюмінісценція (фон) відрізка, однорідно опромінюваного волокна довжиною 3,5 м, рівній "половині палива" РБМК.

Усі сцинтилятори виявили лінійну залежність корисного сигналу від потужності гама дози в діапазоні 0,03-200 Р/с (потужність поглиненої дози до ~ 2 Гр/с (Sі)). Оптична фільтрація сигналів (виділення за допомогою світлофільтрів спектрального інтервалу в районі максимуму світіння сцинтиляторів) дозволила підняти відношення сигналу до фону до ~ 100 для сцинтиляторів NaІ(Tl) і CsІ(Tl).

 3.5. Датчик концентрації газу

На рис. 3.14 представлена структурна схема газового датчика [1]. Світло, випромінюване лазером або світлодіодом, поступає в середовище з вимірюваним газом через багатомодове оптичне волокно. З пройдених через газ світлових хвиль поглинатимуться тільки ті, які входять в спектр поглинання цього газу. Таким чином, подаючи (також за допомогою багатомодового оптичного волокна) пройдене через середовище з газом світло на світловий детектор, можна визначати вид газу і вимірювати його концентрацію. На мал. 3.15 показані робочі спектральні області світловипромінюючих приладів на основі AlGaAs, InGaAsP і світлоприймальних приладів на основі Si, Ge, а також спектр молекулярного поглинання для основних видів газів.

Подібні газові датчики можна використовувати для дистанційного нагляду за ступенем забруднення атмосфери (газами N2O2 , NH3, СН4 і ін.) і за концентрацією горючих газів (СН4, С3Н8 і ін.). Наприклад, реалізована система нагляду за концентрацією газу СН4 на відстані більше 20 км.


ВИСНОВКИ

 

В даній курсовій роботі проведено огляд основних питань, які стосуються волоконно-оптичних датчиків, а саме:

1) актуальність використання волоконно-оптичних датчиків;

2) їх основні характеристики і види оптичних волокон, які використовуються в сенсорних технологіях;

Розглянуто основні види інтерференційних волоконно-оптичних датчиків: торцевий волоконно-оптичний інтерферометр Фабрі-Перо, інтерферометр Маха-Цендера і багатомодовий інтеферометр.

Основну увагу звернуто на хімічні волоконно-оптичні датчики. Як приклад, описаний волоконно-оптичний сенсор для контролю аміаку в повітрі. А також дано інформацію про інші сенсори шкідливих хімічних елементів, наприклад, про волоконно-оптичний датчик іонізуючого випромінювання.


СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

 

1.Окоси Т и др. Волоконно-оптические датчики. Пер. с япон.- Л.:Энергоатомиздат, 1990. - 256 с.

2.Бусурин Б.И., Носов Ю.Р. Волоконно-оптические датчики. М.: Энергоатомиздат, 1990.

3. Мировицкий Д.И. Мультиплексированные системы воло­конно-оптических датчиков // Измер. техника. 1992. № 1. С. 40-42.

4. Udd E. Applications of Fiber Optic Smart Structures // Opt. and Photon. News. 1996. Vol. 7, № 5. Р. 17-22.

5. Senior J.M., Moss S.E., Cusworth S.D. Multiplexing Techniques for Noninterferometric Optical Point-Sensor Networks // Fiber and Integr. Opt. 1998. Vol. 17, № 1. P. 3-20.

6.Зубков И.Л., Соборовер Э.И., Добротин С.А. Оптические химические сенсоры для контроля газовых сред // Материалы IV ВНТК "Методы и средства измерений", часть 1, январь 2002 г. - Н. Новгород: МВВО АТН РФ, 2002. С. 19.

7.Соборовер Э.И., Зубков И.Л. Оптический химический сенсор с тонкопленочным планарным волноводом для контроля газовых сред // Там же. С. 18.

8.Соборовер Э.И., Гундорин В.В. Исследование сенсорного эффекта в плосковолноводном оптическом химическом газовом сенсоре трехслойной конструкции // Датчики и системы. 2001. № 6. С. 23-28.

9. Seitz W.R. Fiber Optics Sensors.//Anal.Chem,1984. Vol. 86,№1. P.16A.

10.Акимов Ю.К. // Физика элементарных частиц и атомного ядра. 1994. т. 25. выпуск 1. с. 229-284.

11. Шевченко В.Г., Гарусов Ю.В., Роботько А.В., Комаров М.В. // Атомные электрические станции: Сб. ст. Вып.9 – М.: Энергоатомиздат, 1987. – с.87

12. Tomashuk A.L., Golant K.M., Dianov E.M. et al. // IEEE Transactions on Nuclear Science, 2000, V. 47, No. 3, Part 1, pp. 693-698.

13. А.В.Бондаренко, Кащук Ю.А., Красильников А.В., и др. // Теоретические и экспериментальные исследования, выполненные в 2003 году. Сб. трудов. Вып.3-Троицк, ОНТИ ГНЦ РФ ТРИНИТИ, 2004, с. 175-178.


Информация о работе «Волоконно-оптичні сенсори контролю шкідливих хімічних компонентів»
Раздел: Физика
Количество знаков с пробелами: 42173
Количество таблиц: 0
Количество изображений: 16

Похожие работы

Скачать
109443
15
38

... чено раніше, якщо вибрати правильний напрямок поширення хвилі, можна створити бездротової датчик температури. Середовище поширення міняється разом з температурою, впливаючи на дані на виході. Нижче наведені деякі найбільш загальні способи застосування датчиків акустичних хвиль. Термодатчик будується на термозалежності швидкості поверхневих хвиль, яка визначається напрямком і типом кристалічного ...

0 комментариев


Наверх