1.3 Град

  1.3.1 Определение

Град – атмосферные осадки в виде частичек льда круглой или неправильной формы (градин) размером 5–55 мм. Град выпадает в теплое время года из мощных кучево-дождевых облаков, сильно развитых вверх, обычно при ливнях и грозах.

  1.3.2 Механизм развития

Рисунок 12. Схема образования града

Поднимающийся от земной поверхности в жаркий летний день теплый воздух охлаждается с высотой, а содержащаяся в нем влага конденсируется, образуется облако. Минуя на некоторой высоте нулевую изотерму, мельчайшие капли воды становятся переохлажденными. Переохлажденные капли в облаках встречаются даже при температуре – 40° (высота примерно 8 – 10 км). Но эти капли очень нестабильны. Поднятые с земной поверхности мельчайшие частицы песка, соли, продукты сгорания и даже бактерии при столкновении с переохлажденными каплями нарушают хрупкий баланс. Переохлажденные капли, вступившие в контакт с твердыми ядрами конденсации, превращаются в ледяной зародыш градины.

Мелкие градины существуют в верхней половине почти каждого кучево-дождевого облака, но чаще всего такие градины при падении к земной поверхности тают. Так, если скорость восходящих потоков в кучево-дождевом облаке достигает 40 км/час, то они не в силах удержать зародившиеся градины, поэтому, проходя сквозь теплый слой воздуха между нулевой изотермой (в среднем высота от 2,4 до 3,6 км) и земной поверхностью, они выпадают из облака в виде мелкого «мягкого» града, либо и вовсе в виде дождя. В противном случае восходящие потоки воздуха поднимают мелкие градины до слоев воздуха с температурой от -10 до -40 градусов (высота между 3 и 9 км), диаметр градин начинает расти, достигая порой диаметра нескольких сантиметров. Стоит отметить, что в исключительных случаях скорость восходящих и нисходящих потоков в облаке может достигать 300 км/час! А чем выше скорость восходящих потоков в кучево-дождевом облаке, тем крупнее град. Для образования градины размером с шар для гольфа потребуются более 10 миллиардов переохлажденных капель воды, а сама градина должна оставаться в облаке как минимум 5 – 10 минут, чтобы достичь столь крупного размера. Градины диаметром более 5 см встречаются в суперячейковых кучево-дождевых облаках, в которых наблюдаются очень мощные восходящие воздушные потоки. Именно суперячейковые грозы порождают смерчи (торнадо), сильные ливни и интенсивные шквалы.

Когда градина достигает такой массы, что восходящий поток не в силах ее удержать, она устремляется к поверхности земли, и мы наблюдаем выпадение крупного града. Так, скорость падения градины диаметров 4 см может достигать 100 км/час, а более крупные градины устремляются к земле со скоростью 160 км/час. В среднем 40 – 70% образовавшихся градин так и не достигают поверхности земли, тая в теплом воздухе.

Площадь зоны градобитий может меняться от одного гектара до нескольких десятков километров. Зоны градобитий соответствуют линии шквала.

При наблюдении града, аккуратно разрезав градину, вы заметите, что матовые слои льда будут чередоваться в виде колец со слоями прозрачного льда. Таким образом, по количеству таких колец можно определить сколько раз градина была поднята восходящими потоками воздуха в облаке. За считанные минуты град покрывает землю ледяными шариками слоем 5–7 см.

1.3.3 Система прогноза, предупреждения и защиты

Расчеты и эксперименты метеорологов и физиков показали, что град зарождается в сравнительно небольшой (20–30 кубических километров), так называемой крупнокапельной зоне облака, и именно на нее надо оказать «нажим».

Самый эффективный способ – искусственно создать большое количество зародышей града. Каждый «новорожденный» будет перехватывать капельки переохлажденной воды, а запасы ее в облаке ограничены. Каждый из зародышей препятствует росту другого, поэтому градины получаются небольшие. Такой град, выпадая на землю, не принесет серьезного урона, а очень возможно, что вместо града пройдет ливень.
Искусственные зародыши града создаются, когда в переохлажденную часть облака вносят сухую углекислоту или йодистое серебро, свинец. Один грамм создает 1012 (триллион) ледяных кристаллов.

Трудность состоит в том, чтобы определить градовую зону в облаке и вовремя распылить там реагенты.

Радиолокаторы обнаруживают градовое облако почти за 40 км до защищаемых территорий. Градовые облака развиваются очень быстро. Весь процесс образования града занимает 30–40 минут, поэтому воздействовать на облако надо не позже чем через 15–20 минут после начала его бурного развития. Уточняют координаты крупнокапельной зоны и пускают в ход зенитные орудия, снабженные специальными снарядами, или ракетами.
Большая противоградовая ракета «Облако» несет примерно 3 кг специального реагента. В голове и хвосте ракеты дистанционные механизмы, которые на необходимой высоте и на определенном участке траектории полета ракеты воспламеняют пиросостав и выбрасывают парашют. Ракета спускается на парашюте, выделяя дым, содержащий мельчайшие частички йодистого свинца. Полет ракеты проходит через переохлажденные части облака, где на частицах аэрозоля образуются мириады ледяных кристаллов. Они и становятся искусственными зародышами градин.

Такая ракета совершенно безопасна, что позволяет вести работы в густонаселенной местности. Дальность действия «Облака» – 10 км.

  1.3.4 Правила поведения

1.         Если вы находитесь в автомобиле, то держитесь дальше от стекол, желательно развернуться к ним спиной (лицом к центру салона) и прикрыть глаза руками или одеждой. Если с вами оказались маленькие дети, то их необходимо закрыть своим телом и также прикрыть глаза либо одеждой, либо рукой. Лучше всего лечь на пол (если позволяют габариты салона).

2.         Если вы перемещаетесь на автомобиле, то прекратите движение. Однако предварительно осмотритесь (если позволяет видимость), нет ли поблизости укрытия (мосты, эстакады, гаражи, крытые стоянки). Если поблизости нет подходящего укрытия, то убедитесь, что вы не находитесь посреди проезжей части, и, по возможности, прижмитесь ближе к ее краю. Однако следует учитывать, что съезд на обочину (особенно в низину) опасен, т. к. ее может размыть при интенсивных осадках и возможном подтоплении. Также не въезжайте в места скопления градин, т. к. ваш автомобиль может также потерять управляемость. Ни в коем случае не покидайте во время града автомобиль! Помните, что средняя продолжительность града составляет примерно 6 минут, и очень редко он продолжается дольше 15 минут.

3.         Если град застал вас в помещении, то держитесь как можно дальше от окон и не выходите из дома. Не пользуйтесь электроприборами, т. к. град обычно сопровождается грозовой деятельностью.

4.         Если град застал вас на улице, то постарайтесь выбрать укрытие. В противном случае защитите голову от ударов градин. Не заходите в низины, которые в считанные минуты могут наполниться водой и превратиться в стремительный поток, или в места с наибольшим скоплением градин, где их слой явно толще, чем вокруг.

5.         Не пытайтесь найти укрытие под деревьями, т. к. велик риск не только попадания в них молний, но и то, что крупные градины могут ломать ветви деревьев, что может нанести вам дополнительные повреждения.

6.         Если вы или кто-то рядом пострадал от воздействия крупных градин. Обязательно свяжитесь со службой спасения, при этом укажите примерный размер градин.

 
2. Расчетная часть

Все расчеты производятся согласно Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций
(утв. приказом Минэнерго РФ от 30 июня 2003 г. №280).

Предприятия энергетического комплекса можно отнести к объектам с ограниченной опасностью (табл. 1)

При строительстве и реконструкции для каждого класса объектов требуется определить необходимые уровни надежности защиты от прямых ударов молнии (ПУМ).

Для специальных объектов минимально допустимый уровень надежности защиты от ПУМ устанавливается в пределах 0,9 – 0,999.

Уровень защиты от ПУМ возьмем первый. Ему соответствует надежность защиты от ПУМ, равная 0,99.

Для каждого уровня молниезащиты должны быть определены предельно допустимые параметры тока молнии. Данные, приведенные в нормативе, относятся к нисходящим и восходящим молниям.

Параметры тока молнии следующие (табл. 2):

1.         Пиковое значение тока I, 200 кА

2.         Полный заряд Qполн, 300 Кл

3.         Заряд в импульсе Qимп, 100 Кл

4.         Удельная энергия W/R, 10 000 кДж / Ом

5.         Средняя крутизна di/dt_30/90%, 200 кА/мкс

Плотность ударов молнии в землю определяется следующей формулой

, (2)

где Ng – плотность ударов молнии в землю;

Td – средняя продолжительность гроз в часах, определенная по региональным картам интенсивности грозовой деятельности.

Параметры первого импульса тока молний (табл. 3):

1.         Максимум тока I, 200 кА

2.         Длительность фронта T1, 10 мкс

3.         Время полуспада Т2, 350 мкс

4.         Заряд в импульсе Qсум,100 Кл

5.         Удельная энергия в импульсе W/R, 10 МДж / Ом

Параметры последовательного импульса тока молний (табл. 4)

1.         Максимум тока I, 50 кА

2.         Длительность фронта Т1, 0,25 мкс

3.         Время полуспада Т2, 100 мкс

4.         Средняя крутизна а, 200 кА/мкс

Параметры длительного тока молнии в промежутке между импульсами (табл. 5):

1.         Заряд Qдл, 200 Кл

2.         Длительность Т, 0,5 с

Форма импульсов тока определяется следующей формулой

, (3)

где I – максимум тока;

h – коэффициент, корректирующий значение максимума тока;

t – время;

τ1 – постоянная времени для фронта;

τ2 – постоянная времени для спада.

Параметры для расчета формы импульса тока молнии (табл. 6):


Информация о работе «Грозы, удары молний, градобитие»
Раздел: Физика
Количество знаков с пробелами: 55092
Количество таблиц: 4
Количество изображений: 12

Похожие работы

Скачать
112340
0
0

... половине XVI в. . Одна из замечательных особенностей отечественного летописания - это его общерусский характер и глубокий интерес к важнейшим событиям мировой истории и к необычайным природным явлениям в государствах Западной Европы, Передней и Средней Азии. В русских летописях охарактеризованы черты климата Закавказья, Ирана, Афганистана, Индии, Сирии, Египта, Турции. Летописцы сохранили для ...

Скачать
138645
10
4

... » по сравнению с предыдущей: зоны, где раз в тысячу лет возможны землетрясения силой 8 и более баллов, занимают теперь примерно 15 % территории страны. 2. Циклические влияния природной среды на антропоэкосистемы   2.1 Наводнения и их антропоэкологическая характеристика Рассказ о наводнениях подобает начать со Всемирного Потопа: "В шестисотый год жизни Ноевой, во второй месяц, в ...

0 комментариев


Наверх