1.3. Антиоксидантний захист біологічних об'єктів
1.3.1 Регуляторні системи пероксидного окиснення ліпідів
Біологічна значимість того або іншого процесу в живих клітках стає загальновизнаною звичайно після того, як виявляються спеціальні ферментативні системи, що регулюють даний процес.
У клітці існує кілька систем [17], що змінюють швидкість окиснення ліпідів і які можна розглянути як регуляторні. Ці системи можна розбити на чотири групи. Система I, відповідальна за строго визначену структурну організацію ліпідів і яка впливає таким чином на швидкість реакції ініціювання, продовження й обриву ланцюга. Ця система відповідає за доступність залишків НЖК фосфоліпідів мембран до дії кисню, чим щільніше упаковка НЖК в фосфоліпідах мембран, тим менше до них доступ кисню, тим нижче швидкість зародження вільних радикалів. Будь-які агенти, що порушують упаковку НЖК, прискорюють окиснення ліпідів. Фактори, що підтримують структуру ліпідів мембран, гальмують окиснення. При моделюванні ПОЛ у мембранах in vitro порушується структурованість ліпідного подвійного шару. Тому кількісні характеристики, отримані на таких модельних системах, можуть бути з визначеною обережністю перенесені на окиснення ліпідів in vivo, структурованість яких впливає на швидкість їхнього окиснення (структурне інгібування).
Система II. Ферменти, що відповідають за утворення і загибель активних форм кисню (супероксиддисмутаза) і вільних радикалів, що ініціюють окиснення, і ферменти, що беруть участь у розпаду пероксидів без утворення вільних радикалів з них (каталаза, глутатионпероксидаза) [23,24].
Система III, що регулює обмін фосфоліпідів мембран і впливає на швидкість окиснення шляхом зміни складу НЖК фосфоліпідів, співвідношень ліпід/білок, фосфоліпід/холестерин і т.д.
Система IV: низькомолекулярні речовини, що виконують роль ініціаторів, каталізаторів, інгібіторів і т.п. і які впливають на стадію розгалуження й обриву ланцюга.
Ендогенна система антиоксидантного захисту містить у собі [2]:
1. Антиоксиданти фенольного типу: вітамін Е, пироксин, стероїдні гормони; мікроелемент селен;
2. SH-вмісні низько– і високомолекулярні сполуки, що розкладають пероксиди за молекулярним механізмом;
3. Антиоксиданти – комплексони; моно-, ді-, трикарбонові кислоти й інші аніони, що зв'язують залізоцерулоплазмін, феррітин.
На думку ряду авторів [24], здатністю безпосередньо реагувати з RO2● ліпідів володіють тільки природні антиоксиданти, їхній вплив на швидкість окиснення значно перевищує ефективність впливу синтетичних інгібіторів. Це визначає особливу роль природних АО в регуляції процесів ПОЛ.
1.3.2 Особливості дії природних антиоксидантів
Ряд експериментальних даних [24,25] свідчить про те, що недостача в організмі тих або інших природних АО призводить до інтенсифікації окисних процесів в ліпідах і до появи в них продуктів окиснення в кількостях, великих чим у нормі.
До природних антиоксидантів або біоантиоксидантів відносяться речовини рослинного або тваринного походження, що гальмують у модельних реакціях розвиток процесів окиснення. Біоантиоксиданти клітки складаються з екзогенних, що доставляються з їжею, і ендогенних АО, що надходять у клітку гуморальним шляхом або синтезуються в ній.
В літературі широко обговорюється питання про внесок різних компонентів ліпідів в їхню антиоксидантну активність (АОА). Однак у цьому питанні не існує єдиної точки зору. Одні дослідники зв'язують АОА ліпідів із присутністю в них однієї індивідуальної речовини (наприклад, токоферола або убіхінона) [26]. Інші вважають, що активність ліпідів визначається сукупністю властивостей різних компонентів, зміна в складі яких виражається в зміні властивостей ліпідів взагалі [10]. Треті думають, що АОА ліпідів залежить від антиоксидантних властивостей природних антиоксидантів, їхньої кількості, від можливого взаємного впливу один на одного, від взаємодії з речовинами, що самі не є АО, але збільшують або зменшують активність останніх [17].
Загальновідомо, що сутність процесу інгібованого окиснення полягає в заміні активних у реакції передачі ланцюга радикалів субстрату, що окисляється, на значно менш активні радикали , що надалі в залежності від співвідношення концентрацій реагентів і відповідних параметрів швидкостей реакцій гинуть у реакціях обриву при взаємодії з радикалами або або вступають у (побічні) реакції продовження ланцюга. Загальноприйнята модель інгібованого окиснення включає наступні реакції [2,27]:
(7),(-7)
(8)
(9)
(10)
(11)
(12)
Ослаблення антиоксидантної дії інгібіторів може бути пояснено протіканням в окисній системі побічних реакцій за участю інгібітора та його радикалів. Такими реакціями можуть бути: реакція взаємодії радикала інгібітора з молекулою вуглеводню (10), з молекулою гідропероксиду (реакція (7)), реакція інгібітора з гідропероксидом (реакція (11)), або киснем (реакція (12)). Швидкість цих реакцій суттєво залежить від будови антиоксиданта й умов окиснення. В першу чергу цікаві властивості інгібіторів в умовах, близьких до фізіологічних: невисока температура окиснення (37˚С), мала глибина перетворення, високий ступінь ненасиченості субстрату. В цих умовах реакцією (12) можна знехтувати за рахунок низької температури окиснення.
В умовах малої глибини окиснення, коли концентрація гідропероксидів у субстраті мала, можна знехтувати реакціями (-7) і (11).
Співвідношення швидкостей реакцій, що зменшують ефективну дію антиоксидантів, може змінюватися в залежності від концентрації вільних радикалів, тому що при збільшенні швидкості ініціювання (Wi) швидкість реакцій (8) і (9) зростає квадратично, а реакція (10) – лінійно. Таким чином, при збільшенні Wi в системі внесок реакції продовження ланцюга радикалами антиоксидантів у загальну швидкість окиснення зменшується, тобто зростає ефективність АО. У роботі [27] розглянута розширена кінетична схема окиснення вуглеводнів і отримані залежності, що підтверджують збільшення ефективності АО при підвищенні концентрації вільних радикалів у системі. Цим пояснюється той факт, що найбільшу ефективність природні АО виявляють у моделях окиснення високоненасичених жирних кислот.
Максимальний ефект гальмування окиснення природними АО в модельних системах може бути отриманий при окисненні високоненасичених субстратів з малим вмістом пероксиду і при низьких температурах. Саме такі умови властиві окисненню ліпідів у біомембранах, тобто фізіологічні умови є оптимальними для прояву антиоксидантної дії природних АО. Високі значення антирадикальної активності природних АО лежать в основі різкої зміни швидкості ПОЛ, що забезпечує високу ефективність регуляції навіть при незначній зміні їхньої концентрації.
У деяких випадках мала кількість природних АО може бути доповнена синтетичними інгібіторами, які можна використати для направленої зміни АОА ліпідів і, очевидно, для впливу на перебіг тих захворювань, для яких зміна антиоксидантної активності ліпідів є суттєвим чинником.
0 комментариев