2. МЕТОДИЧЕСКАЯ ЧАСТЬ
С 1.01.05г в странах ЕС действуют нормы по выбросам вредных веществ для автомобильной техники Евро 4, регламентирующие содержание серы в дизельном топливе не более 50 ррm. К 2010 году планируется весь дизельный транспорт перевести на топливо с ультранизким содержанием серы 10 ррm.
Снижение содержания серы в дизельном топливе может быть достигнуто путем гидроочистки, проводимой в более жестких условиях. Указанная цель также может быть достигнута подбором нового, более эффективного для данного типа сырья, катализатора [13].
Большинство реакторов гидропереработки нефтяного сырья, находящихся в настоящее время в эксплуатации, спроектированы и построены в середине 70-х годов. Поскольку выходы продуктов и их качество изменились, многие нефтепереработчики смогли получить преимущества от использования прогресса в разработке катализаторов и избежать крупных капиталовложений в свои установки. Однако для того, чтобы полностью реализовать потенциал реакторной системы экономически эффективно, необходима подробная оценка рабочих характеристик и конструкции существующих реакторных систем в сочетании с тщательным рассмотрением имеющихся в наличии вариантов модернизации реакторов.
По совершенствованию качества дизельных топлив большие усилия прилагают европейские страны. В них принята концепция ужесточения требований к этому виду топлива, особенно по содержанию в нём сернистых соединений. В настоящее время ограниченное число нефтеперерабатывающих заводов в мире может получать дизельное топливо с ультранизким содержанием сернистых соединений. Кроме этого в этих топливах предусматривается уменьшение присутствия ароматических углеводородов, 98%-й точки выкипания фракции и повышении цетанового числа (в настоящее время 52 пункта, а в перспективе до 55-58 пунктов).
C 2000 года в Европе действуют нормы Евро-3, устанавливающие требования по цетановому числу "не менее 51", по сере "не более 0,035 массовых %", плотности "не более 0,845 г/см3" при нормировании содержания полиароматических соединений "не более 11% объёма".
В рамках программы “Auto Oil II” Европейский Союз (ЕС) постановил, что с 2005 г. содержание серы в ДТ не должно превышать 0,005 %, цетановое число - не менее 54 ед.. К 2011 г. ДТ для ЕС будут иметь следующие показатели: цетановое число - не менее 53 - 58 ед., содержание серы – не более 0,001%, содержание ПАУ – не более 2 %, температура выкипания 95 % - не выше 340 оС.[14]
Таблица 8 - Требования национальных и международных стандартов по отдельным показателям автомобильного дизельного топлива
Показатель | ГОСТ 305-82 | EN 590-99 | Всемирная топливная хартия – 2002 | ||||
EN 590-2004 | Катего-рия 1 (для ЕВРО-0) | Катего-рия 2 (для ЕВРО-1,2) | Катего-рия 3 (для ЕВРО-3,4) | Катего- рия 4 (только ЕВРО-4) | |||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
Цетановое число, не менее | 45,0 | 51,0 | 51,0 | 48,0 | 53,0 | 55,0 | 55,0 |
Цетановый индекс, не менее | не норми-руется | 46 | 46 | 45 | 50 | 52 | 52 |
Содержание серы, мг/кг, не более | 2000 (1вид) 5000 (2 вид) | 350 | 50 (1вид) 10 (2вид) | 3000 | 300 | 30 | не должно выяв- ляться (5–10) |
Массовая доля полициклических ароматических углеводородов, %, не более | не нор-мируется | 11,0 | 11,0 | не нор-мируется | 5,0 | 2,0 | 2,0 |
Температура вспышки, о С, не менее | 35–40 | 55 | 55 | 55 | 55 | 55 | 55 |
По отношению к действующему европейскому стандарту EN 590, в Республике Беларусь был разработан и введен в действие с 1.02.2007 стандарт СТБ 1658-2006, который устанавливает технические требования и методы испытания дизельного топлива, используемого для транспортных средств (таблица 9)[14]
Таблица 9 - Общие требования и методы испытаний
Наименование показателя | Единица измерения | Значение показателя | Метод испытания | |
min | max | |||
1 Цетановое число | - | 51,0 | - | СТБ ИСО 5165 |
2 Цетановый индекс | - | 46,0 | - | СТБ ИСО 4264 |
3 Плотность при 15 °СС' | кг/м3 | 820 | 845 | СТБ ИСО 3675 ЕН ИСО 12185 |
4 Массовая доля полициклических ароматических углеводородов | %(m/m) | 11 | СТБ ЕН 12916 | |
мг/кг | 350* | СТБ ИСО 20846 ЕН ИСО 20847 ЕН ИСО 20884 | ||
5 Содержание серы | 50* | |||
10* | СТБ ИСО 20846 ЕН ИСО 20884 | |||
6 Температура вспышки | °С | Выше 55 | - | СТБ ИСО 2719 |
7 Коксуемость 10 %-ного остатка | % (m/m) | - | 0,30 | СТБ ИСО 10370 |
8 Зольность | % (m/m) | - | 0,01 | СТБ ИСО 6245 |
9 Содержание воды | мг/кг | - | 200 | СТБ ИСО 12937 |
10 Содержание механических примесей | мг/кг | - | 24 | СТБ ЕН 12662 |
11 Коррозия медной пластинки (3 ч при 50 °С) | Единицы по шкале | Класс 1 | СТБ ИСО 2160 | |
12 Стойкость к окислению | г/м3 | - | 25 | СТБ ИСО 12205 |
13 Смазывающая способность: - скорректированный диаметр пятна износа (WSD 1,4) при 60°С | мкм | - | 460 | СТБ ИСО 12156-1 |
14 Вязкость при 40 °С | мм2/с | 2,00 | 4,50 | СТБ ИСО 3104 |
15 Фракционный состав: % (V/V) перегоняется при250°С %(V/V) перегоняетсяпри350°С 95 % (V/V) перегоняется при температуре | % (V/V) % (V/V) °С °с | 85 | <65 360 | СТБ ИСО 3405 |
16 Объемная доля метиловых эфиров жирных кислот (FАМЕ) | % (V/V) | - | 5 | ЕН 14078 |
Доведение качества отечественных ДТ до требований ЕН 590 возможно только при комплексном внедрении на нефтеперерабатывающих заводах современных дорогостоящих технологий гидроочистки (гидрокрекинг и др.) и использовании противоизносных, цетаноповышающих, депрессорно-диспергирующих, антидымных, антиокислительных, моющих и других присадок.
За рубежом для характеристики воспламеняемости топлива наряду с цетановым числом используют дизельный индекс. Этот показатель нормируется и в отечественной технической документации на дизельное топливо, поставляемое на экспорт: ТУ 38.401-58-110-94.
Дизельный индекс (ДИ) вычисляют по формуле :
ДИ =tан d/100,
где tан – анилиновая точка (определяют в °С и пересчитывают в ,°F)
10F = (9,5°С + 32), d – плотность, градусы АПИ.
Между дизельным индексом и цетановым числом топлива существует зависимость :
Дизельный индекс | 20 | 30 | 40 | 50 | 62 | 70 | 80 |
Цетановое число | 30 | 35 | 40 | 45 | 55 | 60 | 80 |
В отечественной НТД нормируется дизельный индекс.
Дизельный индекс определяют по формуле :
ДИ= (108А+32)(141,5-131,5)/100,
где А- анилиновая точка испытуемого топлива, °С;
- относительная плотность топлива.
В настоящее время разработаны и применяются различные методы качественного и количественного анализа серосодержащих соединений в нефти и нефтепродуктах. Качественные методы анализа необходимы прежде всего для обнаружения таких активных соединений, как сероводород, тиолы и свободная сера. Из качественных методов определения активных серосодержащих соединений в лабораторной практике наибольшее применение нашли проба на медную пластинку и так называемая докторская проба.
Анализ на докторскую пробу заключается в том, что нефтепродукт интенсивно перемешивают с раствором плюмбита натрия и порошковой серой. При этом если анализируемый нефтепродукт содержит сероводород, выпадает чёрный кристаллический осадок сульфида свинца:
Na2PbO2 + H2 S = PbS + 2NaOH.
Докторская проба очень чувствительна и позволяет обнаруживать сероводород при его содержании 0,0006%.
Тиолы взаимодействуют с плюмбатом натрия по реакции :
Na2PbO2+ 2RSH = (RS)2Pb + 2NaOH,
при этом анализируемый нефтепродукт окрашивается в оранжевый, коричневый или чёрный цвет.
Для обнаружения сероводорода и свободной серы применяют пробу на медную пластинку, принятую в качестве стандартной (ГОСТ 6321-69). В результате сернистой коррозии медная пластинка, выдержанная в нефтепродукте, при повышенной температуре в течении определённого времени окрашивается в различные цвета от бледно-серого до почти чёрного.
К инструментальным методам определения группового и структурного состава серосодержащих соединений относятся газожидкостная и жидкость-жидкостная хромотография, полярография, потенциометрическое и амперометрическое титрование, УФ-,ИК- и ЯМР-спектроскопия, масс-спектроскопия.
Полярографическим методом анализа можно определять в нефтепродуктах содержание свободной, сероводородной, тиольной, сульфидной и дисульфидной серы.
Сероводородную и тиольную серу в моторных топливах определяют согласно ГОСТ 17323-71 методом потенциометрического титрования нитратом диамминсеребра. По характеру кривых титрования можно качественно оценить наличие в топливе свободной серы
Методы анализа общей серы делят на два класса: химические и физические. Из физических методов анализа следует отметить нейтронно-активационный (НАА), рентгено-флюоресцентный (РФА) и рентгено-радиометрический (РРМ). НАА основан на взаимодействии нейтронов с ядрами облучаемой пробы. Предел обнаружения серы равен 5∙10-2%. В основе РРМ лежит измерение поглощения рентгеновских лучей при известной зависимости степени поглощения от концентрации анализируемого вещества. РРМ можно использовать для анализа нефтепродуктов с массовой долей серы не менее 0,5%
Метод РФА – флюоресцентный вариант рентгено-радиометрического анализа. Предел обнаружения серы составляет 5∙10-3%.
Из химических методов анализа общей серы наиболее распространены и стандартизированы окислительные методы. В окислительных методах навеску нефтепродукта сжигают в приборах различной конструкции. В качестве окислителя используются воздух, кислород, диоксид марганца. В основе методов сжигания лежит реакция окисления всех серосодержащих соединений анализируемого нефтепродукта в оксиды серы (SO2,SO3) с последующим их поглащением и анализом [15].
Фракционным составом обычно называют зависимость количества выкипающего продукта от повышения температуры кипения.
Накопленный большой эксперементальный материал по определению фракционного состава одних и тех же нефтепродуктом разными методами позволил найти общие закономерности их взаимосвязи и предложить методы расчётного определения наиболее трудоёмких в эксперименте составов по ИТК и ОИ на базе наиболее доступного состава, определяемого простой перегонкой из колбы по ГОСТ 2177-81 [16]. Это метод Эдмистера, а так же, не потерявший своего значения и использующийся до сих пор, метод Обрядчикова и Смидович – метод построения ОИ по на основе кривой фракционного состава по ИТК.
Опорными параметрами в этом случае служат температуры выкипания 50% (масс.) по ИТК и уклон этой кривой между точками 10 и 70% (масс.). По этим значениям выполняют построения и находят значения отгона по кривой ИТК, соответствующие температурам начала и конца ОИ.
1. Ахметов С.А. Технология глубокой переработки нефти и газа: Учебное пособие для вузов. Уфа: Гилем,2002. 672с
2. Смидович Е.В. Технология переработки нефти и газа. Ч. 2-я. Крекинг нефтяного сырья и переработка углеводородных газов. – 3-е изд., перераб. и доп. – М.: Химия, 1980 г.
3. Аспель Н.Б., Дёмкина Г.Г. Гидроочистка моторных топлив – М.: Химия, 1977 г.
4. Каминский Э.Ф., Хавкин В.А., Курганов В.М. Деароматизация прямогонных дизельных дистиллятов при умеренном давлении водорода. Химия и технология топлив и масел, 1996.- №6.- с. 13- 14.
5. Магарил Р.З. Теоретические основы химических процессов переработки нефти: Учебное пособие для вузов. – Л.: Химия, 1985
6. Орочко Д.И. Гидрогенизационные процессы в нефтепереработке. М.: Химия, 1971.
7. Справочник современных нефтехимических процессов. Нефтегазовые технологии №3, 2001 г.
8. Материалы 4-ой конференции по технологиям нефтепереработки России и стран СНГ. Москва, сентябрь 2004
9. СТБ 1658-2006.Топливо для двигателей внутреннего сгорания. Топливо дизельное. Технические требования и методы испытаний. Минск: Госстандарт,2006
10. И.Н.Дияров и др. «Химия нефти» руководство к лабораторным занятиям,Ленинград «Химия» 1990г.
11. А.К.Мановян «Технология первичной переработки нефти и природного газа».Москва «Химия»,2001г.
12. Первая Российская конференция по технологиям нефтепереработки./ Документация конференции, 25-27 сентября 2001 г. Москва
13. Технология переработки нефти и газа. Процессы глубокой переработки нефти и нефтяных фракций: учеб.- метод. комплекс.Ч.1.Курс лекций/ сост. и общ. ред. С.М. Ткачева.- Новополоцк : ПГУ,2006. -392 с.
14. Соответствие показателей качества топлива действующим стандартам В.В. Чикулаева, Р.Р. Садыков, Р.Н. Никишин. Интернет-ресурс:
15. И.Н.Дияров и др. «Химия нефти» руководство к лабораторным занятиям,Ленинград «Химия» 1990г.
16. А.К.Мановян «Технология первичной переработки нефти и природного газа».Москва «Химия»,2001г.
... 200–300 нм3/м3 Объемная скорость подачи сырья 2,0–4,0 ч-1 3.2.3 Характеристика производственной среды. Анализ опасностей и производственных вредностей Установка Г-24/1 предназначена для гидроочистки масел или дизельного топлива путем деструктивной гидрогенизацией сернистых соединений на алюмокобальтмолибденовом катализаторе в среде водорода. По технологическим условиям (давление до 5.0МПа и ...
... 0, -5, -10, -15 и -20 °С соответственно. [5] В 1996 г. в Европе введены ограничения на содержание серы в дизельных топливах — не более 0,05 %. Таким требованиям отвечают отечественные ТУ 38.1011348-89. ГЛАВА 2 Судовое маловязкое и тяжелое моторное топливо 1. Общие физико-химические свойства. Тяжелые моторные и судовые топлива используют в судовых энергетических установках. К ...
... для получения высокооктанового бензина. 1. Топлива классифицируются на: моторные топлива; на нефтяные масла и смазки; растворители; высокооктановые добавки и присадки; углеродные материалы; смазочно-охлаждающие жидкости; парафины и церезины. Моторные топлива подразделяются на: карбюраторные топлива (авиационные и автомобильные); реактивные; дизельные (зимние, летние, арктические); ...
... изменить структуру рынков сбыта. Российские экспортеры ищут пути выхода на рынки Востока, прежде всего стремительно развивающегося Китая, чья экономика тесно связана с потреблением нефтепродуктов. Основным элементом плана маркетинга является разработка ценовой и сбытовой политики предприятия. Специфику НПЗ «Ачинский» в данном вопросе обуславливает его дочернее положение по отношению к НК « ...
0 комментариев