4.2 Многообразие продуктов горения как следствие неполного сгорания топлива

Говоря о горении важно учитывать, что фактически вся органика, начиная с простейших углеводородов, и кончая жирами, белками, полимерами – имеет сложное строение молекул. Например, молекула хорошо всем известного парафина состоит из 17 звеньев, причем, каждое звено состоит из 1 атома углерода, и 2–3 связанных с ним атомов водорода. Причем, помимо углерода, водорода, молекулы могут содержать и атомы серы, азота, даже кислорода. Однако даже горение простейших углеводородов показывает некоторые особенности окисления. Уравнение реакции горения алканов в общем виде:


nH(2n+2) + (3n+1) О2 = 2nCO2 + 2 (n+1) Н2O + Q

Из этого уравнения следует, что с увеличением числа углеродных атомов (n) в молекуле увеличивается количество кислорода, необходимого для его полного окисления. Алканы с меньшим количеством звеньев горят быстрее, и при смешивании с воздухом могут быть взрывоопасны, тогда как, например, парафин, начинает кипеть лишь при температурах в несколько сот градусов. При горении высших алканов (n >>1) кислорода, содержащегося в воздухе, может оказаться недостаточно для их полного окисления до СО2. Тогда образуются продукты частичного окисления – угарный газ СО (степень окисления углерода +2) и сажа (мелкодисперсный углерод, нулевая степень окисления). Поэтому высшие алканы горят на воздухе коптящим пламенем, а выделяющийся попутно токсичный угарный газ является еще и взрывоопасным.

Рис. 1. Степени окисления атомов углерода

Прежде всего, окисляются звенья цепи с наименьшей по модулю степенью окисления (СТО). Поэтому, при горении органических веществ многие молекулы сгорают не полностью: окисляется не вся цепочка отдельно взятой молекулы, а только ее часть. До полного окисления органическим веществам часто не хватает кислорода. В этом случае в состав дыма начинают попадать и более простые молекулы органических веществ. Это одна из причин, по которой даже при горении «безобидного» парафина в воздух могут попадать молекулы токсичной органики. Обосновывается это достаточно легко.

Те же алканы в зависимости от условий реакции могут окисляться с образованием различных соединений. При обычной температуре алканы не вступают в реакции даже с сильными окислителями (Н2Cr2O7, KMnO4 и т.п.). При внесении в открытое пламя – горят. Как ранее говорилось, в избытке кислорода происходит их полное окисление до СО2, где углерод имеет высшую степень окисления +4, и воды. Горение углеводородов приводит к разрыву всех связей С–С и С–Н и сопровождается выделением большого количества тепла (экзотермическая реакция).

Предположим, что молекула представленная выше при достаточной температуре встречается с одной молекулой кислорода. Предположим, окисляется ветвь – СН3:

или, что аналогично:

Разумеется, вероятность такого превращения очень мала, но возможна. Обычно альдегиды получают с применением менее активных кислородсодержащих окислителей, например, марганцовки (KMnO4). Однако, данный пример показывает, что при горении алканов могут образовываться вещества других классов, на данном примере – альдегид. Многие реакции неполного сгорания широко используются для получения некоторых веществ или газовых смесей. Горение метана при недостатке кислорода происходит по уравнениям:

2CH4 + 3O2 → 2CO + 4 H2O

CH4 + O2→C + 2H2O

Последняя реакция используется в промышленности для получения сажи из природного газа, содержащего 80–97% метана. Частичное окисление алканов при относительно невысокой температуре и с применением катализаторов сопровождается разрывом только части связей С–С и С–Н и используется для получения ценных продуктов: карбоновых кислот, кетонов, альдегидов, спиртов. Например, при неполном окислении бутана (разрыв связи С2–С3) получают уксусную кислоту:

CH3 – CH2 = CH2 – CH3 + 3O2 → 2CH3COOH + 2H2O

Бутан уксусная кислота

Высшие алканы (n>25) под действием кислорода воздуха в жидкой фазе в присутствии солей марганца превращаются в смесь карбоновых кислот со средней длиной цепи С12–С18, которые используются для получения моющих средств и поверхностно-активных веществ. Важное значение имеет реакция взаимодействия метана с водяным паром, в результате которой образуется смесь оксида углерода (II) с водородом – «синтез-газ»:

u254_2


Эта реакция используется для получения водорода. Синтез-газ служит сырьем для получения различных углеводородов.

Еще более убедительные результаты показывает процесс окисления целлюлозы. Как и в случае других органических соединений, окисление молекул целлюлозы происходит не полностью, и в зависимости от условий, протекает с преобладанием тех или иных факторов, приводящих к образованию тех или иных продуктов. Как и в других случаях, наибольший процент примесей в продуктах горения образуется при тлении. Процессы, происходящие при тлении подобны тем, которые происходят при длительном температурном воздействии на целлюлозу. Данный вопрос изучался при решении проблемы постепенного распада бумаги в трансформаторных катушках. Разумеется, температуры, действующие внутри трансформаторных катушек, значительно меньше температуры горения, однако, они достаточны для протекания как реакций термического разложения, так и окислительных процессов. Механизм разложения труден для понимания, и строгого представления о химии протекающих процессов не существует. Но в общем, его можно рассматривать, как совокупность процессов окисления и разложения.


Целлюлоза окисляется, и конечные продукты реакции окисления находятся в зависимости от природы окислителя, концентрации ионов водорода (рН) и температуры. Во всех случаях, направление реакции – это окисление гидроксильных групп до карбонильных (образование альдегидов) и карбонильных – до карбоксильных (образование кислот). В этом химическом процессе образуется вода. Соседство карбоксильных или карбонильных групп ослабляет гликозидную связь и может привести к разрыву цепи и дальнейшему окислению.

Нагревание целлюлозы в отсутствие воды и окислителя в пределах 200°С приводит к разрыву гликозидных связей и раскрытию глюкозидных колец. Продуктами такого термического воздействия являются глюкоза, вода, окислы углерода и органические кислоты. Основными в количественном отношении продуктами разложения при этом являются вода и окислы углерода. Присутствие воды и кислорода определяет и направление дальнейшего химического превращения образующихся из целлюлозы соединений. В присутствии избытка кислорода основным образующимся окислом углерода является двуокись. В случае преобладания гидролитического механизма распада целлюлозы часть образовавшейся глюкозы (или, точнее, её дегидратированной формы 1,6–ангидро-бета-D-глюкопиранозы, левоглюкозана) получает возможность за счёт дегидратации превратиться в соединения фуранового ряда, а другая часть окисляется до двуокиси углерода и воды.

Наиболее распространенные в быту горючие материалы

Парафин С17Н36

Крахмал C6H10O2

Глюкоза C6H12O6

C6H12O6 + 6О2 = 6СО2+6Н2О

C6H10O2 + Н2О = C6H12O6

Натуральный каучук (–СН2 – С = СН – СН2 -)CH3

Синтетический каучук (–СН2 – СН = СН – СН2 -)

Резина

Твердые жиры (состоят из триглицеридов предельных (твердых) кислот (искусственное сало)

СН2 – O – СO – С15 H31

|

СН – O – СO – С17 H35

|

СН2 – O – СO – С17 H33

Жиры жидкие (масла), состоят из триглицеридов непредельных (жидких) кислот

СН2 – O – СO – (СН2)7 – СН = СН – (СН2)7 – С H3

|

СН – O – СO – (СН2)7 – СН = СН – (СН2)7 – С H3

|

СН2 – O – СO – (СН2)7 – СН = СН – (СН2)7 – С H3


Спирты С2Н5ОН

Целлюлоза [C6H7O2(OH)3] n, n ≈100000



Информация о работе «Густой дым как поток продуктов горения»
Раздел: Химия
Количество знаков с пробелами: 70637
Количество таблиц: 3
Количество изображений: 6

Похожие работы

Скачать
149350
3
20

... тренировок, Шведы являются признанными мировыми экспертами в пожаротушении. Многие противопожарные службы мира сегодня используют Шведский метод подготовки. В последние 10 лет в Швеции появились огневые тренажеры для подготовки ствольщиков, работающие на газовом топливе (см. рисунок 4). Их недостатком является условный характер тренировки: оператор тренажера управляет интенсивностью подачи и ...

Скачать
96295
14
1

... предусматривают заранее и указывают в оперативных карточках и планах эвакуации. Тушение пожаров в детских учреждениях. Одновременно с организацией эвакуации детей и защитой путей эвакуации обеспечивают ввод стволов на основных путях распространения огня и в очаг пожара. Для тушения пожара в школах и детских учреждениях применяют воду, водные растворы смачивателей и воздушно – механическую пену ...

Скачать
132610
1
0

... ). Решение множества ключевых проблем современности, таких как производство продуктов питания, многих лекарств и других веществ связано с активным внедрением в жизнь биотехнологий. Столь ощутимый прогресс биологии был бы невозможен без ее активного взаимодействия с другими науками. Но парадокс современного состояния науки состоит в том, что множество исследований оказывается "на стыке наук", для ...

Скачать
141903
0
0

... все эти виды встречаются повсеместно и в достаточном количестве, некоторые растения являются охраняемыми или имеют ограниченный ареал распространения. Поэтому при подготовке к выступлению в номинации «Лесные робинзоны» участники должны уметь распознавать самых известных и легко узнаваемых представителей местной флоры. Описание дикорастущих съедобных растений Бедренец - камнеломка Бедренец - ...

0 комментариев


Наверх