5.2 Количественно-временные закономерности

Как было сказано выше, интенсивность очищения водной абсорбцией зависит от средней величины пузырьков (отношения площади S к объему V должно быть наибольшим), и глубины подъема h, напрямую определяющую время подъема τ. Считая, что пузырек имеет форму шара, отношение его площади (S=π2R2) к объему () определяется выражением:. В этом плане наибольшее практическое значение имеет отношение радиуса пузырька (R) к средней длине свободного пробега частиц (Lпч) при данных условиях. Чем больше радиус пузырька при фиксированной длине свободного пробега (при том же давлении), тем меньшее количество частиц имеет возможность достичь границы раздела за время подъема к поверхности. Чем меньше отношение , тем меньше рядов молекул отделяет конкретную частицу от границы раздела. Частица участвует в хаотическом движении, поэтому, при столкновении с другой частицей (частицами) она имеет примерно одинаковые шансы отскочить в 4 направлениях. Следовательно, вероятность того, что частица при столкновении примерно сохранит свое направление равна . Поэтому, в дальнейшем будем использовать выражение

В упрощенном варианте степень очистки пузырька определяется средней вероятностью каждой отдельно взятой частицы достичь поверхности и пересечь границу раздела. Обозначим вероятность символом «η». Она, в свою очередь, складывается из вероятности ее достичь за время подъема , где  – характерный угол отклонения от вектора перемещения; вероятности перехода в водную среду , зависящей скорости и частицы , и вероятности быть удаленной от пузырька . Как известно, вероятность совпадения нескольких факторов равна произведению вероятностей этих факторов, то есть: , или:

.

С учетом этого, найдем радиальную вероятность (для частиц, удаленных от поверхности раздела на разные расстояния)

И общую вероятность для всех частиц объема, т.е., возможную степень очистки:

,

где -суммарное количество примесных веществ в пузыре,  – общее количество вещества в объеме этого пузыря.

Приблизительные значения продолжительности и скорости подъема пузырька примерно определяется по следующему алгоритму.

а) По закону Архимеда FA = ρжgV, следовательно, подъемная сила, действующая на тело, погруженное в воду определяется выражением:

ma= ρжgV-mg,

б) откуда ускорение подъема равно:

a = g(ρжV-m)/m.

в) Как знает каждый, кто не спал на уроках физики с 7 класса, проделанный путь можно найти из выражения: h = υ0t + at2/2. Или, заменив t на τ, получим: h = υ0τ + aτ2/2. Если отверстие трубки фильтра не направлено вверх, то υ0 = 0, следовательно, h = aτ2/2, откуда:


.

Так как объем увеличивается по мере подъема, рекомендую для подстановки в эту формулу взять среднее его значение. Кроме того, изменение ускорения за счет роста объема и выталкивающей силы будет аннулирован за счет увеличения вязкостного сопротивления. Вязкое сопротивление определяется, как произведение коэффициента вязкости  на половину площади пузырька:

При подъеме с глубины протекают одновременно 4 процесса:

– происходит уменьшение действующего давления;

– уменьшается внутренняя энергия газа, заключенного в пузырьке;

– происходит частичное перемешивание сред на границе раздела;

– меняется состав газа в пузырьке.

Уменьшение действующего давления. Как известно, давление воды на конкретной глубине определяется выражением Pв = ρжgh. Однако, на открытом воздухе действует и атмосферное давление Pатм, поэтому реальное давление на глубине h складывается из этих двух составляющих Pреал = Pв + Pатм, или Pреал = ρжgh + Pатм. Если считать, что при подъеме температура пузырька не меняется, то уменьшающееся давление воды приведет к уменьшению давления внутри пузырька. Пропорционально уменьшению давления пузырька будет возрастать его объем: Pреал = ρжgh + Pатм, V~1/Pреал; ΔP = ρжgΔh → ΔV~1/ΔP=1/ρжgΔh, таким образом, ΔV~1/Δh.

Перемешивание сред на границе раздела. Как было написано выше, при подъеме пузырек движется с некоторым ускорением, следовательно, его движение можно охарактеризовать средней скоростью υср на всем его пути вверх h.


При этом вокруг шарообразного пузырька происходит интенсивное течение по дугам окружности, в результате чего на омывающие слои воды действует центробежная сила, направленная от центра: Fц=ma= υср2/R. Очевидно, именно эта сила и является одним из факторов, обеспечивающих перемешивание воздуха и воды. Верхняя часть пузырька (1) рассекает собой водную среду при подъеме. Ее можно считать фактически плоской, и поэтому, действие на ней центробежной силы пренебрежимо мало. С зоны (1) вода стекает в область (2), которая характеризуется значительным ростом угла (15–75º) на небольшом перепаде высоты. Увеличение угла при этом, приводит к значительному росту площади пузыря в этой области по мере изменения высоты. В результате, к водам, стекающим с зоны (1) примешиваются дополнительные объемы воды, формируя мощные потоки, омывающую всю зону (2). В зоне (2) действует значительная центробежная сила, вызывая интенсивное перемешивание слоев обоих сред в граничной зоне. При этом, водные потоки захватывают частицы из приповерхностных слоев, и их концентрация постепенно увеличивается по мере приближения к зоне (3). Зона (3) характеризуется незначительным действием как разбавляющих потоков, так и центробежной силы. В результате, на уровне этой зоны происходит просто перекачивание находящихся в переходных слоях частиц. При этом, пополнение потоков новыми частицами, попавшими из газовой среды увеличивается незначительно. В зоне (4) вновь усиливается центробежная сила, а уменьшение площади при приближении к зоне (5) приводит к интенсивному высвобождению ранее захваченных водных объемов. В результате, на уровне зоны (4) образуются вихревые и турбулентные потоки, способствующие рассеиванию в окружающий объем захваченных из пузыря частиц. Интенсивно происходит захват частиц из газовой среды. В зоне (5) некоторое снижение центробежной силы компенсируется интенсивным процессом омывания пузыря. Продолжается значительное поглощение частиц водой из хвостовой части, по краям которой образуются мощные вихревые потоки. Таким образом, интенсивное поглощение водой частиц из пузырька происходит во всех областях, исключая 1 и 3.

Использование подогретой или холодной воды для фильтрации. С увеличением температуры воды возрастает энергия движения частиц, а следовательно, растворимость всех веществ, кроме газов, процент диссоциировавших молекул, а так же парциональное давление над поверхностью воды. Вместе с тем увеличивается и процент частиц летучих примесей, удоляющихся с поверхности воды в атмосферу. Поэтому именно прохладная вода (с температурой от 0 до 35 ºС) способна удерживать в себе летучие органические соединения. Это условие позволяет задерживать и накапливать разного рода вещества, и выделять их для дальнейшего применения.

Выше были рассмотрены зависимости степени очистки газов при пропускании через воду в случаях, когда температура газов и воды примерно одинакова. Однако на практике распространены случаи (опять же кальян), когда в воду поступают газы разогретые до температуры ее кипения. В этом случае пузырек воздуха может не только не увеличиваться по мере подъема к поверхности, но и наоборот, уменьшаться! Имеет значение как глубина подъема, так и диаметр пузырька. Чем больше глубина, тем дольше будет подниматься, тем сильнее сможет остыть и отчиститься за время подъема. С другой стороны, чем меньше диаметр пузырька, тем скорее он будет остывать, тем сильнее изменяется его объем за время подъема. Чем больше температура пузыря, тем меньше в нем частиц, и тем сильнее он сожмется за счет охлаждения. Разумеется, кинетическая энергия разогретого газа выше, чем у охлажденного, следовательно, возрастает роль коэффициента диффузии из воздушной в газовую среду. Имеет значение и температура самой воды. Чем ниже температура, тем выше растворимость газов, но ниже растворимость негазообразных веществ. К тому же, с понижением температуры воды, падает и способность диссоциации молекул. Таким образом, может быть существенно снижена растворимость компонентов, растворимых в кислотах и других соединениях. Понижение температуры жидкости способствует конденсации паров, находящихся в пузырьке. Это означает большую степень очистки растворимых жидкостей, но меньшую от газов, так как энергия их молекул и коэффициент диффузии падают при уменьшении температуры.

Ранее рассматривались случаи, когда пузырек поднимается вертикально, отделившись от поверхности трубки. И именно высота столба воды считалась путем, пройденным пузырьком, которая и подставлялось во все формулы. Однако, увеличение водяного столба приводит к увеличению давления, что не всегда желательно. Большее давление подразумевает увеличение плотности воздуха в пузырьках, а так же требует более высокой мощности устройства. Как уже отмечалось выше, давление внутри пузырька можно снизить, откачивая газ над поверхностью, то есть, разряжая его и уменьшая давление, оказываемое на жидкость сверху. Есть возможность увеличить путь пузырька не увеличивая давление, – просто заставить пузырек подниматься вдоль наклонной плоскости. Однако в этом случае на скорость подъема влияет сила трения. То есть, двигаться вдоль направляющей плоскости пузырек будет лишь по достижении определенного диаметра. При этом, для начала движения требуется тем больший диаметр пузырька, чем больше угол отличается от 90 º. Кроме того, за счет соприкосновения с плоскостью, частично уменьшается поверхность раздела между водой и газом, изменяется характер перемешивания слоев. В ряде случаев могут образовываться пузырьковые «пробки», приводящие к слиянию пузырьков. Так же проблемой является образование пузырьков изначально растворенных в воде газов, в частности чистого воздуха, на стенках сосуда. Слияние фильтруемого пузыря с обычным приводит к увеличению диаметра и разбавлению примесей. А как было сказано выше, эффективность очистки тем эффективнее, чем больше концентрация примесей. Самый значительный рост пузырька происходит при его подъеме по трубке, загнутой в спираль. В этом случае пузырек не только испытывает силу трения при контакте с поверхностью трубки, но и вынужден изменять направление в горизонтальной плоскости, при этом сильно возрастает сопротивление движению за счет вязкости воды.


Информация о работе «Густой дым как поток продуктов горения»
Раздел: Химия
Количество знаков с пробелами: 70637
Количество таблиц: 3
Количество изображений: 6

Похожие работы

Скачать
149350
3
20

... тренировок, Шведы являются признанными мировыми экспертами в пожаротушении. Многие противопожарные службы мира сегодня используют Шведский метод подготовки. В последние 10 лет в Швеции появились огневые тренажеры для подготовки ствольщиков, работающие на газовом топливе (см. рисунок 4). Их недостатком является условный характер тренировки: оператор тренажера управляет интенсивностью подачи и ...

Скачать
96295
14
1

... предусматривают заранее и указывают в оперативных карточках и планах эвакуации. Тушение пожаров в детских учреждениях. Одновременно с организацией эвакуации детей и защитой путей эвакуации обеспечивают ввод стволов на основных путях распространения огня и в очаг пожара. Для тушения пожара в школах и детских учреждениях применяют воду, водные растворы смачивателей и воздушно – механическую пену ...

Скачать
132610
1
0

... ). Решение множества ключевых проблем современности, таких как производство продуктов питания, многих лекарств и других веществ связано с активным внедрением в жизнь биотехнологий. Столь ощутимый прогресс биологии был бы невозможен без ее активного взаимодействия с другими науками. Но парадокс современного состояния науки состоит в том, что множество исследований оказывается "на стыке наук", для ...

Скачать
141903
0
0

... все эти виды встречаются повсеместно и в достаточном количестве, некоторые растения являются охраняемыми или имеют ограниченный ареал распространения. Поэтому при подготовке к выступлению в номинации «Лесные робинзоны» участники должны уметь распознавать самых известных и легко узнаваемых представителей местной флоры. Описание дикорастущих съедобных растений Бедренец - камнеломка Бедренец - ...

0 комментариев


Наверх