1.         Рассмотрим рисунок 3.

 

Рис. 3 - Фрагменты ИК спектров растворов ионола (а), п-крезола (б), фенола (в) в бензоле

Видно, что полоса поглощения ионола смещена в область высоких частот (3673 см-1), но обладает наименьшей оптической плотностью, пара-крезол находится правее (3559 см-1), но оптическая плотность больше, чем у ионола и фенола еще более смещен в область низких частот: относительно ионола на 82 см-1 , а относительно спектра пара-крезола на 4 см-1 – незначительно.


Во всех трех системах идет взаимодействие с π-электронной плотностью бензола. Легче всего образуется водородная связь с фенолом, так как взаимодействие ничем не затруднено из-за отсутствия посторонних заместителей. Видно, что у спектра(в) самая большая оптическая плотность и сдвиг в низкочастотную область, так как в растворе образуется большое количество ассоциатов.

В паракрезоле в параположении находится СН3 – группа, которая увеличивает электронную плотность кольца за счет положительного мезомерного и индуктивного эффектов, что оказывает влияние на реакционную способность ОН-группы. Из рисунка 3 видно, что количество ассоциатов уже меньше и пик сдвинут значительно в область низких частот. Аналогично из спектра ионола видно, что ассоциатов небольшое, так как образование водородной связи затруднено трет-бутильных заместителей.

2.         Рассмотрим рисунок 1.

Рис.1 - Фрагменты ИК спектров растворов ионола в четыреххлористом углероде (а), в хлороформе (б) и бензоле (в).

Из рисунка видно влияние природы растворителя на способность к образованию водородной связи с ионолом. В четыреххлористом углероде водородная связь с ионолом не образуется, так как растворитель инертный в силу отсутствия протонов. С хлороформом, благодаря наличию одного протона происходит взаимодействиеполоса поглощения смещена на 6 см-1 в низкочастотную область и наблюдается уширение спектра, что также связано с образованием водородной связи. В растворе бензола также происходит образование водородной связи между растворителем и веществом, и пик еще менее острый и с более низкой оптической плотностью ИК-поглощение свободных ОН-групп, что также говорит об увеличении доли ассоциатов в растворе.

Таблица 1 - Характеристика ИК полос поглощения гидроксильных групп растворов ионола

Растворитель

ν, см-1

Оптическая плотность ИК поглощения ОН своб.

Четырёххлористый углерод (CCl4)

3649

0,34

Хлороформ (CHCl3)

3643

0,29

Хлористый метилен (СН2Cl2)

3638

0,24

Бензол (C6H6)

3637

0,23

Толуол (C7H8)

3637

0,23

Кумол (C9H12)

3643

0,19

Примечание: ν – частота максимума полосы поглощения в ИК спектрах растворов ионола в области валентных колебаний ОН-группы

Из таблицы 1 видно, что при растворении ионола в бензоле и толуоле частота и оптическая плотность одинаковы. Возможно, это связано с недостаточной чувствительностью прибора, так как СН3-группа влияет на электронную плотность кольца за счет положительных мезомерного и индуктивного эффектов.

3.         Рассмотрим рисунок 2.

 

Рис. 2 – Фрагменты ИК спектров растворов БФ в четыреххлористом углероде (а), в хлороформе (б) и бензоле (в).

 

Таблица 2 - Характеристика ИК полос поглощения гидроксильных групп растворов БФ

Растворитель

ν, см-1

Оптическая плотность в областях спектра ИК поглощения

ОН (своб.)

ОН… π связь

ОН (внутримол.)

ОН (межмол.)

Четырёххлористый углерод (CCl4)

3631, 3508, 3440

0.32

-

0.69

0.31

Хлороформ (CHCl3)

3622, 3508, 3438

0.46

-

0.33

0.38

Хлористый метилен (СН2Cl2)

3620, 3508, 3435

0.60

-

0.42

0.54

Бензол (C6H6)

3612, 3573, 3504, 3427

0.39

0.26

0.59

0.44

Толуол (C7H8)

3612, 3573, 3504, 3437

0.35

0.29

0.58

0.40

Кумол (C9H12)

3610, 3573, 3504, 3437

0.31

0.27

0.63

0.39

Из рисунка видно, что при растворении БФ в четыреххлористом углероде(а) присутствуют ОН-группы в свободном состоянии(3631 см-1), также видно, что преобладает цис-форма БФ(3508 см-1), то есть образуется внутримолекулярная водородная связь, но есть и небольшая доля транс-БФ(3440 см-1), то есть образуется межмолекулярная водородная связь. Из фрагмента спектра хлороформа (б) видно, что БФ со свободными ОН-группами уже меньше(3622 см-1), а соотношение цис- и транс-БФ примерно 1:1, то есть в хлороформе в равной степени идет образование как внутримолекулярной, так и межмолекулярной водородной связи(3508 см-1 и 3438 см-1 соответственно). В растворе бензола (в) свободные ОН-группы практически отсутствуют, появляется небольшой пик с частотой 3573 см-1 , это говорит о взаимодействии БФ с π-системой бензола и здесь вновь преобладает цис-БФ(внутримолекулярная водородная связь) и в меньшем количестве транс-БФ(межмолекулярная водородная связь). Из таблицы 2 также видно, что при растворении БФ в толуоле и кумоле также преимущественно образуется цис-БФ, в меньшей степени транс-БФ, практически отсутствуют свободные ОН-группы.


Заключение

Анализ спектральных характеристик растворов пространственно-затрудненных фенолов показал, что на проявление межмолекулярных взаимодействий влияет тип и полярность растворителя. Так, CCl4 не способствует образованию межмолекулярных водородных связей в растворах фенолов, являясь инертной средой. С повышением полярности хлорсодержащих растворителей наблюдается увеличение интенсивности и сдвиг максимума полос поглощения гидроксильных групп в область низких частот, что объясняется межмолекулярным взаимодействием их с кислыми протонами CHCl3 и CH2Cl2. В ароматических растворителях обнаружено межмолекулярное взаимодействие гидроксильных протонов фенолов с π-электронной системой ароматических углеводородов. Кроме того, использование в качестве растворителей хлорсодержащих и ароматических углеводородов позволило доказать, что в полярных хлорсодержащих и ароматических растворителях БФ содержит смесь соединений с ВМВС и ММВС, находящихся в лабильном динамическом равновесии.


Список использованной литературы

 

1.         А.В. Васильев, Е.В. Гриненко «Инфракрасные спектры органических и природных соединений», Санкт-Петербург, 2007г.,30с.

2.         Дж. Робертс, М. Касерио «Основы органической химии», М., Мир, 1978 г, 842 с.

3.         Пиментел Дж. Мак Клеллан «Водородная связь», М., Мир, 1964, 462с.

4.         Москва В.В. Водородная связь в органической химии // Соросовский образовательный журнал.1999.№2. с.58-64.


Информация о работе «ИК-спектральное проявление водородных связей»
Раздел: Химия
Количество знаков с пробелами: 29277
Количество таблиц: 3
Количество изображений: 14

Похожие работы

Скачать
27369
0
6

... обнаружено смещение кислотно-основного равновесия молекулярный комплекс ионная пара вправо при повышении полярности растворителя. Кроме указанных фиксируются и другие структурные и спектроскопические особенности водородных связей, которые используются, с одной стороны, для идентификации последних, а с другой – в расшифровке их электронной природы. Так как водородная связь возникает только в том ...

Скачать
242525
34
27

... и природы вещества, участвующего в электрохимической реакции. Электрохимические параметры при этом служат аналитическими сигналами, при условии, что они измерены достаточно точно. Электрохимические методы анализа в практику химического анализа вошли сравнительно давно и занимают в ней важную роль. Впервые потенциометрическое титрование было проведено в 1893 г. в институте Оствальда в Лейпциге, а ...

Скачать
177379
0
29

... геномах растений, вызываемые с помощью ФПУ-трансформированной человеческой речи, которая резонансно взаимодействует с хромосомной ДНК in vivo [25,29]. Этот результат, осмысленный нами с позиций семиотико-волновой составляющей генетического кода, имеет существенное методологическое значение и для анализа таких суперзнаковых объектов, как тексты ДНК, и для генома в целом. Открываются принципиально ...

Скачать
218705
14
26

... (47) Величина, обратная t, характеризует скорость прироста при данной температуре концентрации триплетных молекул акцептора энергии, q = 1/t , и называется константой скорости процесса [161]. Итак, прирост в результате отжига образца числа молекул, участвующих в излучении сенсибилизированной фосфоресценции происходит по экспоненциальному закону. Константа скорости этого ...

0 комментариев


Наверх