Доказательство теоремы Ферма методами элементарной алгебры
Бобров А.В.
г. Москва
Контактный телефон – 8 (495)193-42-34
bobrov-baltika@mail.ru
В теореме Ферма утверждается, что равенство для натуральных и может иметь место только для целых .
Рассмотрим равенство
, (1)
где и - натуральные взаимно простые числа, то есть числа, не имеющие общих целых множителей, кроме 1. В этом случае два числа всегда нечетные. Пусть - нечетное число, и - натуральные числа. Для всякого действительного положительного числа выполнима операция нахождения арифметического значения корня, то есть равенство (1) можно записать в виде:
, (2)
где и - действительные положительные множители числа В соответствии со свойствами показательной функции, для любого
из действительных положительных чисел и существуют единственные значения чисел , удовлетворяющие равенствам
, (3)
Из равенств (2) и (3) следует:
, . (4)
Поскольку p>q, всегда имеет место p-q=k, или аp= аk∙×аq, то есть числа и содержат общий множитель , что противоречит условию их взаимной простоты. Это условие выполнимо только при , то есть при . Тогда равенства (4) принимают вид:
, (5)
откуда следует
, (6)
то есть для взаимно простых и числа и всегда являются двумя последовательными целыми числами. Еще Эвклидом доказано, что всякое нечетное число выражается, как разность квадратов двух последовательных целых чисел, то есть равенство (1) для натуральных взаимно простых и может быть выражено только в виде равенства
. (7)
Справедливость приведенного доказательства можно проиллюстрировать следующим примером.
Пусть в равенстве Ферма числа и – целые взаимно простые, – четное. Тогда числа , , их сумма и разность - также целые, показатель степени p>q .
Целые числа и
являются взаимно простыми, если не содержат общих целых множителей, кроме 1. Это условие выполнимо только тогда, когда общий целый множитель , то есть , .
Тогда разность , что для одновременно целых и может иметь местотолько при , то есть при или , что и позволило Пьеру де Ферма сделать почти 370 лет назад свою запись на полях арифметики Диофанта.
Похожие работы
... , существует бесконечное количество троек пифагоровых чисел А, В и С и, следовательно, бесконечное количество прямоугольных треугольников, у которых стороны А, В и С выражаются целыми числами. ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА Вариант 1 Уравнение /3/ с учетом уравнений /5/ и /6/ запишем следующим образом: А2m= С2m –В2m =(Сm –Вm)∙(Сm +Вm) /15/ Тогда в соответствии с ...
... , но теоремы, полные доказательства которых, как утверждал Ферма, у него имелись, все впоследствии были доказаны (основной вклад в доказательство которых внёс Эйлер). Но было и одно исключение – приятное исключение – это Великая теорема Ферма: История Большой теоремы Ферма Большой известностью во всём мире пользуется «Великая теорема Ферма» (она же – «Большая» или «Последняя»). ...
... Декарт в первую очередь идеолог: он основатель философской школы, он формирует понятия, совершенствует систему буквенных обозначений, но в его творческом наследии мало новых конкретных приемов. В противоположность ему Пьер Ферма мало пишет, но по любому поводу может придумать массу остроумных математических трюков (см. там же “Теорема Ферма”, ”Принцип Ферма”, ”Метод бесконечного спуска Ферма”). ...
... случая (K, Р) = 1 [см. (1.49)]. Пришли к противоречию: левые части (1.44) и (1.45) делятся на K 2, а правые их части не делятся на K 2. Проблема Ферма (первый и второй случаи) для всех простых показателей Р = 6n + 1 доказана. 1.7 Второй случай ПФ для простых показателей вида 6n + 5 В это разделе в качестве модулей будем использовать числа K и K2. Расширим представление о модуле K еще ...
0 комментариев