Доказательство теоремы Ферма для n=4

2146
знаков
0
таблиц
0
изображений
Доказательство великой теоремы Ферма для показателя степени n=4

Великая теорема Ферма формулируется следующим образом: диофантово уравнение:

Аn+ Вn = Сn (1)

где n - целое положительное число, большее двух, не имеет решения в целых положительных числах.

Суть Великой теоремы Ферма не изменится, если уравнение (1) запишем следующим образом:

Аn = Сn - Вn (2)

Пусть показатель степени n=4. Тогда уравнение (2) запишется следующим образом:

А4 = С44 (3)

Уравнение (3) запишем в следующем виде:

А4 = (С2) 2 - (В2)2 = (С22) ∙ (С22) (4)

Пусть: (С22) = N4 (5)

Уравнение (5) рассматриваем как параметрическое уравнение 4 - ой степени с параметром N и переменными B и С. Преобразуем уравнение (5):

N4 = (С -В) · (С +В) (6)

Для доказательства используем метод замены переменных. Обозначим:

C-B=M (7)

Из уравнения (7) имеем:

C=B+M (8)

Из уравнений (6), (7) и (8) имеем:

N4=M∙ (B+M+B) =M∙ (2B+M) = 2B∙M+M2 (9)

Из уравнения (9) имеем:

N4 - M2= 2B∙M (10)

Отсюда:

B = (11)

Из уравнений (8) и (11) имеем:

C=  (12)

Из уравнений (11) и (12) следует, что необходимым условием для того чтобы числа В и С были целыми, является делимость числа N4 на число M, т.е. число M должно быть одним из сомножителей, входящих в состав сомножителей числа N4.

Из уравнений (11) и (12) также следует, что необходимым условием для того чтобы числа В и С были целыми, является также одинаковая четность чисел N и M: оба числа должны быть четными или оба нечетными.

Из уравнений (11) и (12) также следует:

С22=  (13)

Обозначим:

С22 = K (14)

Пусть:

N=P∙S; M=S2

Тогда:

K = С22 =  (15)

Из уравнений (4), (5) и (15) следует:

A4 = N4∙ K=N4· S4 (16)

Отсюда следует:

A = N· S∙ (17)

Очевидно, что:

 - дробное число.

То есть:

С2 + В2 ≠ R4; A4 ≠ N4∙R4

Следовательно, в соответствии с формулой (17) число А - дробное число.

Другими словами, определенные по формулам (11) и (12) значения чисел B и С удовлетворяют только уравнению (5) и не удовлетворяют предполагаемому равенству:

С2 + В2 = R4

Таким образом, великая теорема Ферма не имеет решения в целых положительных числах для показателя степени n=4.


Информация о работе «Доказательство теоремы Ферма для n=4»
Раздел: Математика
Количество знаков с пробелами: 2146
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
1735
0
0

оложительное число, большее двух, не имеет решения в целых положительных числах. Суть Великой теоремы Ферма не изменится, если уравнение /1/ запишем следующим образом: Аn = Сn - Вn (2) Рассмотрим частное решение уравнения (2) при показателе степени n=3. В этом случае уравнение (2) запишется следующим образом: A3 = C3 - B3 = (C-B) ∙ (C2 + C·B +B2) (3) Обозначим: C - B = K (4) ...

Скачать
12562
0
0

... , но теоремы, полные доказательства которых, как утверждал Ферма, у него имелись, все впоследствии были доказаны (основной вклад в доказательство которых внёс Эйлер). Но было и одно исключение – приятное исключение – это Великая теорема Ферма: История Большой теоремы Ферма Большой известностью во всём мире пользуется «Великая теорема Ферма» (она же – «Большая» или «Последняя»). ...

Скачать
12803
0
0

... спортивный или престижный характер. Вопреки мнению ученых математиков, ниже предлагается к обсуждению официальным лицам из института им. В.А. Стеклова и любителям математики из Интернета компактный, практически на 2-х страницах способ элементарного доказательства теоремы Ферма в общем виде, основанный на разложении уравнений Ферма по биному Ньютона на его составляющие. Это позволяет после ...

Скачать
20930
0
0

... n = q ³ 3 и четном значении z также не имеет целочисленных решений. Поэтому далее достаточно доказать, что целочисленных решений не имеет также и уравнение (14). Доказательство великой теоремы ферма. Уравнения (1) и (14) полностью эквивалентны, т.е. либо не существует целочисленных решений у обоих уравнений, либо целочисленные решения одновременно имеют уравнения (1) и (14). Покажем, что ...

0 комментариев


Наверх