2.             Спектр процесса авторегрессии

Формула для нахождения спектра модели АР лежит в основе параметрического спектрального оценивания.

Для ее вывода будем рассматривать процесс АР как реакцию формирующего фильтра , на вход которого подаются некоррелированные отсчеты .

Можно показать, что -преобразование передаточной функции АР фильтра имеет вид

, (11)

где

, . (12)

-преобразования СПМ выходного и входного процессов связаны соотношением

. (13)

Чтобы найти СПМ выходного АР процесса необходимо в (13) сделать замену  и положить, что для белого шума  – постоянная величина.

Тогда из (13) следует выражение для параметрической оценки СПМ

. (14)


Выражение (14) широко используется в параметрическом методе спектрального оценивания.

В качестве параметров, полностью характеризующих спектральную оценку случайного процесса, выступают коэффициенты АР и порядок модели.

Параметрическое спектральное оценивание обладает рядом преимуществ по сравнению с традиционными методами спектрального оценивания. К ним относятся: более высокое спектральное разрешение при использовании коротких выборок, отсутствие боковых лепестков.

С помощью модели АР можно получать спектральные оценки случайных процессов со сложной формой СПМ.

Для этого может быть придется использовать модели АР большого порядка. На основе модели АР легко синтезируются оптимальные фильтры подавления, согласованные не только по частоте и полосе спектра, но и по форме спектра случайного процесса.

Достоинством формулы (14) является возможность анализировать СПМ в аналитическом виде, что невозможно сделать при использовании традиционных методов спектрального оценивания на основе преобразования Фурье.

Например, можно найти формулы для определения частоты максимумов и минимумов СПМ.

Чтобы определить положение максимума или минимума АР оценки СПМ, нужно взять производную от (14) по  и приравнять ее к нулю. Корни полученного уравнения определяют положение экстремумов функции СПМ.

При , можно показать, что

, (15)

где  – частота на которой находится максимум СПМ.


3. Характеристическое уравнение модели авторегрессии

Модель АР, описываемая уравнением (1), может быть представлена в операторной форме

, (16)

где оператор АР  имеет вид

. (17)

Действие оператора сдвига z на текущий отсчет описывается следующим образом

. (18)

Из условия устойчивости формирующего АР фильтра с рациональной передаточной функцией (11), следует условие стационарности АР процесса. Для проверки стационарности случайного АР процесса используется характеристическое уравнение

. (19)

Если корни характеристического уравнения (19) лежат внутри единичного круга на комплексной плоскости, то процесс АР удовлетворяет условию стационарности и его корреляционная функция стационарна. Характеристическое уравнение (19) можно представить также в виде

. (20)


Тогда условие стационарности заключается в том, что корни характеристического уравнения (20)  должны лежать вне единичного круга на комплексной плоскости.

Используя (19) или (20) оператор АР (17) можно представить в виде

. (21)

Из (21) следует, что уравнение АР (1) можно записать следующим образом

. (22)

Сравнивая (1) и (22) найдем связь между коэффициентами АР и корнями  характеристического уравнения (20).Приведем соответствующие формулы для :

, (23a)

;

, (23б)

;

;

, (23в)

;

;

;

, (23г)


где первый индекс в квадратных скобках указывает на соответствующий порядок модели.

Полученные формулы оказываются весьма полезными для определения коэффициентов АР по заданным характеристикам случайного процесса.

Отметим, что корни характеристического уравнения полностью описывают модель АР.

Свойства модели зависят параметров, через которые они выражаются. Если корень действительный, то его можно представить в виде экспоненциальной функции

, (24а)

где – коэффициент демпфирования равный , а -ширина полосы -го пика СПМ.

Тогда действительные корни характеристического уравнения принимают вид

. (24б)

Комплексные корни характеристического уравнения описываются выражениями

, , (25)

где  – собственная частота модели АР с поправкой на демпфирование, соответствующая -тому пику СПМ.


4. Генерация коррелированного случайного процесса

В задачах статистического моделирования часто возникает необходимость генерации случайного процесса с заданной корреляционной функцией или с заданной формой и характеристиками СПМ. Для этих целей эффективно использовать генератор процесса АР, показанный на рис. 2.

Генерация случайного процесса осуществляется методом порождающего случайного процесса.

Порождающий процесс в виде белого шума, обычно с гауссовой функцией распределения, пропускается через формирующий фильтр, параметры которого определяются соответствующей моделью АР.

 

  

Рисунок 2. Генератор процесса АР

Для генерации процесса нужно выбрать необходимое количество пиков СПМ. Тогда порядок модели АР равен удвоенному числу пиков. Так, для СПМ с одним пиком на ненулевой частоте, порядок модели равен 2. Для СПМ с двумя пиками порядок модели равен 4.

Затем выбирают частоту пика и его ширину полосы. Вычисленные значения корней характеристического уравнения по формулам (24), используются для нахождения коэффициентов АР.

Для этого корни подставляются в соответствующие выражения (23). Генерация процесса осуществляется с помощью рекуррентного выражения (1) с использованием порождающего белого шума a[t].

Функция распределения a[t] может быть любой, но, как правило, используют нормальное распределение с нулевым математическим ожиданием и единичной дисперсией. Белый шум с нормальным распределением получают из белого шума с равномерным распределением.


Информация о работе «Модель авторегрессии в корреляционной теории»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 10163
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
32541
0
1

... же для нахождения энергетически оптимальной концентрации эритроцитов в крови, парциального давления в артериальной и венозной крови, определения оптимальных функциональных параметров системы внешнего дыхания и др. 2 Принцип минимального воздействия в эколого-математических моделях Один из способов применения целевой функции состоит в формулировании общего утверждения относительно поведения ...

Скачать
65133
2
7

... последовательность случайные величины распределены одинаково, так что определенный выше процесс белого шума является стационарным.   7.Числовые характеристики случайной составляющей При анализе временных рядов используются числовые характеристики, аналогичные характеристикам случайных величин: – математическое ожидание (среднее значение процесса) ; – автоковариационная функция ; ...

Скачать
56254
0
0

... Таким образом, имеется следующая задача : На основе существующих алгоритмов проанализировать возможность их применения как к последовательной обработке сигналов в реальном времени, так и к блочной обработке и оценить качество получаемых результатов . Критериями «качества» оценки спектральной плотности мощности в общем случае являются смещение этой оценки и ее дисперсия. Однако аналитическое ...

Скачать
38546
10
6

... М.М. Анализ временных рядов и прогнозирование. М.: Финансы и статистика, 2001. 5.  Джонстон Дж. Эконометрические методы. М.: Статистика, 1980. 6.  Образцова О.Н., Назарова О.В., Канторович Г.Г. Экономическая статистика. Эконометрика. Методические материалы. – М.: ГУ – ВШЭ, 2000. 7.  Кремер Н.Ш. Теория вероятностей и математическая статистика: Учебник для вузов. – М.: ЮНИТИ-ДАНА, 2001. – 543 с. ...

0 комментариев


Наверх