2. Новый физический закон и новая фундаментальная константа.

Поскольку для нового физического поля необходимо математическое описание, то был предпринят поиск законов конвергирующего поля. В [10, 11, 17] сформулирован и доказан новый закон конвергирующего поля: «Произведение электромагнитной массы на характерную длину есть величина постоянная равная унитронной константе». Доказательство этого закона следует из формулы планка E = h·v. Соотношение для энергии принимает вид:

E = hu·c2 / cl.

В данном соотношении выражение, стоящее перед константой с2, играет роль массы:

m = hu / cl (1).

В формуле (1) комбинация констант hu / c = Gu дает новую физическую константу. Ее значение равно:

Gu = 2.56696941(21)·10-45 [kg·m].

Размерность новой константы [kg·m] или [N·s2]. Константа Gu названа унитронной константой [8, 10, 11, 17]. С ее помощью представлен новый физический закон конвергирующего поля [8, 10, 11, 17]:

m·l = Gu (2).

Таким образом для конвергирующего поля выполняется следующее необычное соотношение:

m·l = Gu = const = 2.56696941(21)·10-45.

Формула нового физического закона m·l = Gu показывает, что с увеличением массы (энергии) уменьшается размер кванта и наоборот с уменьшением массы увеличивается размер кванта. Наблюдается обратная зависимость массы и характерной длины. У вещественных частиц, обладающих массой покоя, такой зависимости нет. Для вещества наблюдается прямая зависимость массы и линейных размеров. Видим, что в сравнении с веществом для конвергирующего поля характерны инверсные процессы. По моему мнению этот закон носит универсальный характер и применим для всех нелокальных физических объектов. Этот же закон должен распространяться на все виды квантовых полей и на объекты квантовых полей (фотон, гамма-квант, гравитон и т.д.), поскольку объекты квантовых полей являются нелокальными физическими объектами. Очевидно представляет интерес исследовать особенности применения нового закона к фотону. Основной признак квантов – их нелокальность, они не могут быть локализованы в пространстве. Закон связывает размеры кванта и массу (энергию кванта, как эквивалент массы). Основная особенность закона состоит в том, что увеличение энергии приводит к уменьшению размеров кванта, т.е. проявляется обратная зависимость энергии и размеров. Такая особенность квантов указывает на то, что для них неприменим подход как к механическим объектам. Законы механики на них не распространяются.

Из соотношения (2) вытекает еще одна формула, связывающая энергию конвергирующего поля и длину [10, 17]:

E·l = Ju = const = 2.30707705(21)·10-28 [J·m].

В этой формуле J = hu·c = 2.30707705(21) [J·m]также является новой физической константой. Ее размерность [J·m] или [N·m2]. В данном случае также имеет место обратная заквисимость энергии и характерной длины. Этот закон формулируется следующим образом: «Произведение энергии кванта на характерную длину есть величина постоянная». Исходя из этого закона в [14] получен закон обратных кубов для конвергирующего поля. Закон обратных кубов указывает на особенность конвергирующего поля, которая состоит в том, что с ростом энергии кванта его размеры уменьшаются. При этом объемная плотность энергии конвергирующего поля изменяется по закону четвертой степени [14].

3. Проверка правильности значения новой константы Gu.

Для проверки правильности найденного значения унитронной константы Gu воспользуемся значениями массы, энергии и длины из таблицы CODATA 1998, имеющими надежное зкспериментальное подтверждение [2]. Выберем значение массы электрона m = mе = 9.10938188(72)·10-31 [kg] и его классического радиуса l = re =2.817940285(31)·10-15[m] и подставим эти значения в формулу m·l = Gu. В результате получим me·re = 2.56696941(23)·10-45 [kg·m]. Это значение во всех цифрах совпадает со значением константы Gu, полученным по формулеGu = hu / c. Небольшое различие в точности для последних двух цифр, очевидно можно отнести к проблеме согласования значений констант. Аналогично проверим значение константы Ju. Для этого выберем значение энергии, равное энергии электрона Е = Ее = 8.18710414(64)·10-14 [J] и длину, равную его классическому радиусу l = re = 2.817940285(31)·10-15[m] и подставим эти значения в формулу Е·l = Ju. В результате получим Ee·re = 2.30707705(21)·10-28 [J·m]. Это значение полностью совпадает со значением константы Ju, полученным по формулеJu = hu·c.

4. Границы применимости нового физического закона.

Укажем пределы изменения массы и длины в новом законе конвергирующего поля m·l = Gu. В [10, 11, 17] показано, что электромагнитная масса принимает значения от некоторого предельного космологического значения mcos до me:

mcos ≤ m ≤ me.

Метрическая характеристика изменяется от некоторого предельного космологического значения lcos до lu:

lu ≤ l ≤ lcos.

При увеличении массы до значении m = mе т. е. при достижении массы значения массы электрона, характерная длина уменьшается до классического радиуса электрона. Таким образом верхнее предельное значение массы для конвергирующего поля ограничено массой электрона и позитрона. Как видим, масса для конвергирующего поля является динамическим параметром. Длина также является динамическим параметром. При l = re масса квантуется. При таком значении метрики масса перестает быть динамическим параметром, она фиксируется в своей величине, выступает как масса покоя частицы, что приводит к появлению локального объекта – элементарной частицы. Нелокальность, свойственная квантовым объектам поля, имеющим изменяющуюся электромагнитную массу, сменяется локальностью, свойственной вещественным частицам, имеющим фиксированную инертную массу. При l = re динамический физический объект, обладавший свойством непрерывности, приобретает новое свойство – дискретность и физическая реальность предстает в виде вещества (частиц).

Таким образом новый закон описывает механизм рождения вещества конвергирующим полем. График зависимости между массой и длиной в новом физическом законе приведен на (рис. 3).

 

Рис. 3. График зависимости между массой и длиной в конвергирующем поле.

Исходя из нового закона m·l = Gu, находит подтверждение смелая идея Лоренца о том, что масса электрона имеет электромагнитное происхождение. Природа массы электрона и спектр масс элементарных частиц были одними из трудных нерешенных задач фундаментальной физики. Р. Фейнман отмечал, что «масса электрона вполне может быть целиком электромагнитной, т.е. все его 0.511 Мэв обусловлены электродинамикой. Так это или нет? У нас нет теории и по сей день, поэтому мы ничего не можем сказать с уверенностью». [1]. До сих пор не были раскрыты ни происхождение массы, ни ее сущность. Отсутствовала теория массы, не было теории, объясняющей, почему массы элементарных частиц квантованы и образуют дискретный спектр значений. Приведенные выше результаты проливают свет на эти проблемы. Здесь следует особо подчеркнуть, что масса в конвергирующем поле является динамическим параметром и рассматривается нами как эквивалент энергии кванта, поэтому наделять ее механическим, например, инерционным свойством недопустимо.

Закон m·l = Gu не является единственным для конвергирующего поля. Существует второй динамический закон конвергирующего поля. Второй закон конвергирующего поля связан с константой сопротивления конвергирующего поля Ru, который объединяет метрические характеристики в виде [8, 10, 11, 17]:

L·ν = Ru = const,

где: L – индуктивность, ν – частота, Ru - константа сопротивления (Ru = 29.9792458 [Ом]) [8, 10, 11, 17].

Этот закон показывает, что индуктивность и частота находятся в обратной зависимости, а их произведение равно константе Ru. Из динамического закона L·ν = Ru следует, что индуктивность принимает значения от некоторого предельного космологического значения Lcos до Lu (Lu = 2.817940285(31)·10-22 [Гн]) [17]:

Lu ≤ L ≤ Lcos.

Частота изменяется от αH до νuu = 1.06387·1023 [Гц]) [17]:

αH ≤ ν≤ νu.

где: Н – постоянная Хаббла, α – постоянная тонкой структуры.

Границы применимости нового закона находятся в огромном диапазоне пространственных интервалов – от 10-14 см. до 1028 см. и временных интервалов - от 10-23с. до 1017с.


Информация о работе «Конвергирующее поле - новое поле не волновой природы»
Раздел: Наука и техника
Количество знаков с пробелами: 23249
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
457642
0
0

... : содержательный аспект 2.2.1 Постнеклассическое естественнонаучное образование и концепция самоорганизации В данном параграфе представлена презентация синергетической парадигмы на арене познания постнеклассического естественнонаучного образования. Поскольку появление такой парадигмальной установки на методологическом горизонте можно считать свершившимся фактом, то представляет интерес задача ...

Скачать
154115
0
0

... эмиссионная томография (ОЭТ); позитронная эмиссионная томография (ПЭТ). Весь этот комплекс методов позволяет проводить неинвазивное изучение структуры и функций мозга. Психофизиологическое изучение психических процессов и состояний Принципы кодирования информации в нервной системе Сегодня можно говорить о нескольких принципах кодирования в нейронных сетях. Одни из них достаточно просты и ...

Скачать
267972
0
0

... школьной гигиены - изучение способов охраны здоровья, гигиенических принципов организации учебно-воспитательного процесса, направленных на сохранение здоровья школьников. Школьная гигиена тесно связана с возрастной физиологией (физиологией детей и подростков), педагогикой, психологией. Она охватывает широкий круг вопросов, имеющих здравосберегающее значение для школьников. Содержание школьной ...

0 комментариев


Наверх