МІНІСТЕРСТВО ОСВІТИ УКРАЇНИ
Бердичівський політехнічний коледж
Контрольна робота
№ 1 з дисципліни
«Архітектура комп'ютерів»
курс 4
(варіант №7)
Студента групи ПЗС-405
Івасюка Андрія Михайловича
Перевірив
викладач В.Ю. Козік
м. Бердичів, 2006 р.
Зміст
1. Структурна систематика архітектури Р. Хокні та К. Джессхоупа
2. Технологія SMM, SSE
3. Набори мікросхем системної логіки процесорів Pentium II/III
4. Суперскалярний мікропроцесор та конвеєри виконання команд
Список використаної літератури
1. Структурна систематика архітектури Р. Хокні та К. Джессхоупа
На першому рівні всі обчислювальні системи поділяють за принципом множинності (кількості) на одно-комп’ютерні та багато комп’ютерні. Обчислювальні системи з одним комп’ютером, у свою чергу, поділяються на ЕОМ з одним конвеєрним МП та з багатьма МП.
Перші з них є традиційними послідовними комп’ютерами, а другі утворюють клас паралельних комп’ютерів, які поділяють на конвеєрні, не конвеєрні та мікропроцесорні матриці.
Прикладом однієї з перших не конвеєрних обчислювальних машин з паралелізмом е комп’ютер СБС-6600, побудований на основі декількох скалярних процесорів.
Конвеєрні ЕОМ поділяються на такі, що виконують тільки скалярні команди, наприклад комп’ютери СБС-7800, РРС АР-120В, і такі, що виконують векторні команди. Комп’ютери, що використовують векторні команди, поділяють, у свою чергу, на комп’ютери із спеціалізованим конвеєром, наприклад СКАУ-1, та з універсальним конвеєром - комп’ютер СУВЕК 205.
Комп’ютери а класу машин з матрицею процесорів поділяють за зв’язаністю процесорів в матриці, розрядністю тощо.
За призначенням комп’ютери поділяють на дві основні групи:
- універсальні
- спеціалізовані.
Сучасний PC є і простим і складним. Він став простіше, оскільки за минулі роки багато компонентів, що використовуються для збірки системи, були інтегровано з іншими компонентами і тому кількість елементів зменшилася. Він став складніше, оскільки кожна частина сучасної системи виконує набагато більше функцій, ніж ті ж частини в старіших системах.
Нижче перераховані всі компоненти, які повинен містити сучасний PC.
2. Технологія SMM, SSE
Задавшись метою створення все більш швидких і могутніх процесорів для портативних комп'ютерів, Intel розробила схему управління живленням. Ця схема дає можливість процесорам економно використати енергію батареї і таким чином продовжити термін її служби. Intel вперше реалізувала таку можливість в процесорі 486SL, який є вдосконаленою версією процесора 486DX. Згодом, коли можливості управління живленням стали більш універсальними, їх почали вбудовувати в Pentium і у всі процесори пізніших поколінь. Система управління живленням процесорів називається SMM (System Management Mode — режим управління системою).
SMM фізично інтегрована в процесор, але функціонує незалежно. Завдяки цьому вона може управляти споживанням потужності, залежно від рівня активності процесора. Це дозволяє користувачу визначати інтервали часу, після закінчення яких процесор буде частковий або повністю вимкнений. Дана схема також підтримує можливість припинення/відновлення, яка дозволяє миттєво включати і відключати потужність, що звичайно використовується в портативних комп'ютерах. Відповідні параметри встановлюються в BIOS. У лютому 1999 року Intel представила громадськості процесор Pentium III, що містить оновлення технології ММХ, що одержала назву SSE (Streaming SIMD Extensions — потокові розширення SIMD). До цього моменту інструкції SSE носили ім'я Katmai New Instructions (KNI), оскільки спочатку вони були включені в процесор Pentium III з кодовим ім'ям Katmai. Процесори Celeron 533A і вище, створені на основі ядра Pentium III, теж підтримують інструкції SSE. Раніші версії процесора Pentium II, рівно як Celeron 533 і нижче (створені на основі ядра Pentium II), SSE не підтримують.
Інструкції SSE містять 70 нових команд для роботи з графікою і звуком на додаток до існуючих команд ММХ. Фактично цей набір інструкцій окрім назви KNI мав ще і другу назву — ММХ-2. Інструкції SSE дозволяють виконувати операції з плаваючою комою, реалізовувані в окремому модулі процесора. У технологіях ММХ для цих цілей використовувався стандартний пристрій з плаваючою комою.
У лютому 1999 року Intel представила громадськості процесор Pentium III, що містить оновлення технології ММХ, що одержала назву SSE (Streaming SIMD Extensions — потокові розширення SIMD). До цього моменту інструкції SSE носили ім'я Katmai New Instructions (KNI), оскільки спочатку вони були включені в процесор Pentium III з кодовим ім'ям Katmai. Процесори Celeron 533A і вище, створені на основі ядра Pentium III, теж підтримують інструкції SSE. Раніші версії процесора Pentium II, рівно як Celeron 533 і нижче (створені на основі ядра Pentium II), SSE не підтримують.
Інструкції SSE містять 70 нових команд для роботи з графікою і звуком на додаток до існуючих команд ММХ. Фактично цей набір інструкцій окрім назви KNI мав ще і другу назву — ММХ-2. Інструкції SSE дозволяють виконувати операції з плаваючою комою, реалізовувані в окремому модулі процесора. У технологіях ММХ для цих цілей використовувався стандартний пристрій з плаваючою комою.
Інструкції SSE2, що містять в собі 144 додаткові команди SIMD, були представлені в листопаді 2000 року разом з процесором Pentium 4. У SSE2 були включені всі інструкції попередніх наборів ММХ і SSE.
Потокові розширення SIMD (SSE) містять цілий ряд нових команд для виконання операцій з плаваючою комою і цілими числами, а також команди управління кеш пам'яттю. Нові технології SSE дозволяють ефективніше працювати з тривимірною графікою, потоками аудіо- і відеоданих (DVD-відтворення), а також додатками розпізнавання мови. В цілому SSE забезпечує наступні переваги:
• вищий дозвіл/якість при перегляді і обробці графічних зображень;
• поліпшена якість відтворення звукових і відеофайлів у форматі MPEG2, а також одночасне кодування і декодування формату MPEG2 в мультимедійних додатках;
• зменшення завантаження процесора і підвищення точності/швидкості реагування при виконанні програмного забезпечення для розпізнавання мови.
Інструкції SSE і SSE2 особливо ефективні при декодуванні файлів формату MPEG2, який є стандартом стиснення звукових і відеоданих, використовуваним в DVD-дисках. Отже, SSE-оснащені процесори дозволяють досягти максимальної швидкості декодування MPEG2 без використовування додаткових апаратних засобів (наприклад, платня декодера MPEG2). Крім того, процесори, що містять набір інструкцій SSE, значно перевершують попередні версії процесорів при розпізнаванні мови.
Однією з основних переваг SSE по відношенню до ММХ є підтримка операцій SIMD з плаваючою комою, що дуже важливе при обробці тривимірних графічних зображень. Технологія SIMD, як і ММХ, дозволяє виконувати відразу декілька операцій при отриманні процесором однієї команди. Зокрема, SSE підтримує виконання до чотирьох операцій з плаваючою комою за цикл; одна інструкція може одночасно обробляти чотири блоки даних. Для виконання операцій з плаваючою комою інструкції SSE можуть використовуватися разом з командами ММХ без помітного зниження швидкодії. SSE також підтримує попереджуючу вибірку, даних (prefetching), яка є механізмом попереднього прочитування даних з кеш-пам'яті.
Зверніть увагу, що якнайкращий результат використовування нових інструкцій процесора забезпечується тільки при їх підтримці на рівні використовуваних додатків. На сьогоднішній день більшість компаній, що займаються розробкою програмного забезпечення, модифікувала додатки, пов'язані з обробкою графіки і звуку, що дозволило більш повно використовувати можливості SSE. Наприклад, графічний додаток Adobe Photoshop підтримує інструкції SSE, що значно підвищує ефективність використовування SSE-оснащених процесорів. Підтримка інструкцій SSE вбудована в DirectX 6.1 і в самі останні відео- і аудіодрайвери, що поставляються з операційними системами Windows 98 Second Edition, Windows Me, Windows NT 4.0 (з пакетом оновлення 5 або пізнішим) і Windows 2000.
Інструкції SSE є розширенням технологій ММХ, а SSE2 — розширенням інструкцій SSE. Таким чином, процесори, що підтримують SSE2, підтримують також інструкції SSE, а процесори, що підтримують інструкції SSE, у свою чергу, підтримують оригінальні команди ММХ. Це означає, що стандартні ММХ – додатки можуть виконуватися практично на будь-яких системах.
... дисковода для гнучких дисків, який використовувався в базисному комп'ютері PC для зберігання інформації, був встановлений жорсткий диск. В цих комп'ютерах використовувалися 8-розрядні процесори 8088 і 8-розрядна шина ISA (Industry Standard Architecture — архітектура промислового стандарту) для розширення системи. Шина — ім'я, дане роз’ємом розширення, в які можна встановити додаткову плату. Шина ...
... поза сумнівом, буде вище. Можна навіть самостійно зібрати фактично ідентичну систему із самого початку, але це — тема розділу 24, “Збірка і модернізація комп’ютера”. Якщо Gateway, Dell, Micron і інші компанії не проводять власної системної плати, то хто ж це робить? Ви угадали— цим займається Intel. Не тільки названі компанія -60 Розділ 2. Компоненти PC, можливості і проектування систем іноді ...
... , винайдена послідовність інструкцій, які зберігають всі модулі виконання максимально зайнятими на обох ядрах. 5. Ці числа живлення тільки для моделей MC8640Dwxx1067Nz і MC8640wxx1067Nz. VDD_Coren = 0.95 V і 1.2 Архітектура мікропроцесора MPC8640D Блок цього процесора включає в себе 2 ядра процесора та 1Мб кеш-пам’яті другого рівня (L2) (чотири блоки по 32Кб Cache SRAM). Високошвидкісна ...
... команду для виконання необхідної операції. Вибірка команди на виконання здійснюється побайтно протягом декількох циклів роботи МК. Час виконання команди може складати від 1 до 12 циклів. До МК із CISC-архітектурою відносяться МК фірми Intel з ядром MCS-51, що підтримуються в даний час великою кількістю виробників. Схема синхронізації МК забезпечує формування сигналів синхронізації, необхідних ...
0 комментариев