2.1      Конструкция подземных теплопроводов.

Все конструкции подземных теплопроводов можно разделить на две группы: канальные и бесканальные.

В канальных теплопроводах изоляционная конструкция разгружена от внешних нагрузок грунта стенками канала.

В бесканальных теплопроводах изоляционная конструкция испытывает нагрузку грунта.

В настоящее время большинство каналов для теплопроводов сооружается из сборных железобетонных элементов, заранее изготовленных на заводах или специальных полигонах. Из всех подземных теплопроводов наиболее надежными, зато и наиболее дорогими по начальным затратам являются теплопроводы в проходных каналах.

Основное преимущество проходных каналов – постоянный доступ к трубопроводам. Проходные каналы позволяют заменять и добавлять трубопроводы, проводить ревизию, ремонт и ликвидацию аварий на трубопроводах без разрушения дорожных покрытий и разрытия мостовых. Проходные каналы применяются обычно на выводах от теплоэлектроцентралей и на основных магистралях промплощадок крупных предприятий. В последнем случае в общем канале прокладываются все трубопроводы производственного назначения (паропроводы, водоводы, трубопроводы сжатого воздуха).

В крупных городах целесообразно сооружать проходные каналы (коллекторы) под основными проездами до устройства на этих проездах усовершенствованных дорожных одежд. В таких коллекторах прокладывается большинство подземных городских коммуникаций: теплопроводы, водопроводы, силовые и осветительные кабели, кабели связи и др.

Габаритные размеры проходящих каналов выбирают из условия обеспечения достаточного прохода для обслуживающего персонала и свободного доступа ко всем элементам оборудования, требующим постоянного обслуживания (задвижки, сальниковые компенсаторы, дренажные устройства и т. п.).

Проходные каналы должны быть оборудованы естественной вентиляцией для поддержания температуры воздуха не выше 30ОС, электрическим освещением низкого напряжения (до 30 В), устройством для быстрого отвода воды из канала. Изоляция данных конструкций выполняется посредством защиты с помощью покровного слоя из гидрофобного рулонного материала, например полиэтилена или бризола, а также теплоизоляционной оболочки на трубопроводе от капельной влаги.

В тех случаях, когда количество параллельно прокладываемых трубопроводов невелико (2-4), но постоянный доступ к ним необходим, например пересечение автомагистралей с усовершенствованными покрытиями, теплопроводы сооружаются в полупроходных каналах. Габаритные размеры полупроходных каналов выбирают из условия прохода по ним человека в полусогнутом состоянии. В полупроходных каналах можно проводить осмотр трубопроводов и мелкий ремонт тепловой изоляции при выведенной из работы тепловой сети.

Большинство теплопроводов прокладывается в непроходных каналах или бесканально.

2.2   Конструкция теплопроводов в непроходных каналах.

Каналы собираются из унифицированных железобетонных элементов разных размеров. Для надежной и долговечной работы теплопровода необходима защита канала от поступления в него грунтовых поверхностных вод. Как правило, нижнее основание канала должно быть выше максимального уровня грунтовых вод.

Для защиты от поверхностных вод наружная поверхность канала (стены и перекрытия) покрывается оклеечной гидроизоляцией из битумных материалов.

При прокладке теплопроводов ниже максимального уровня грунтовых вод сооружаются попутные дренажи, снижающие местный уровень грунтовых вод по трассе теплопровода ниже его основания.

Основное преимущество теплопровода с воздушным зазором по сравнению с бесканальным заключается в создании благоприятных условий для высыхания тепловой изоляции, а сухая тепловая изоляция, уменьшает не только тепловые потери, но и опасность химической и электрохимической наружной коррозии подземного теплопровода.

В каналах с воздушным зазором изоляционный слой может выполняться в виде подвесной изоляционной конструкции. Она состоит из трех основных элементов: антикоррозийного защитного слоя, теплоизоляционного слоя, защитного механического покрытия. Для увеличения долговечности теплопровода несущая конструкция подвесной изоляции (вязальная проволока или металлическая сетка) покрывается сверху оболочкой из некорродирующих материалов или асбоцементной штукатуркой.

2.3 Конструкция бесканальных теплопроводов.

Бесканальные теплопроводы применяются в том случае, когда они по надежности и долговечности не уступают теплопроводам в непроходных каналах и даже превосходят их, являясь более экономичными по сравнению с последними по начальной стоимости и трудозатратам на сооружение и эксплуатацию.

Все конструкции бесканальных теплопроводов можно разделить на три группы: в монолитных оболочках, засыпные, литые.

Требования к изоляционным конструкциям такие же, как к конструкциям теплопроводов в каналах.

2.3.1           Конструкция бесканальных теплопроводов в монолитных оболочках.

В этих теплопроводах на стальной трубопровод наложена в заводских условиях оболочка, совмещающая тепло- и гидроизоляционные конструкции. Принципиально теплопроводы могут применяться не только бесканально но и в каналах.

Современным требованиям соответствуют теплопроводы с монолитной теплоизоляцией из ячеистого полимерного материала типа пенополиуретана с замкнутыми порами и интегральной структурой. Применение полимерного материала позволяет создавать изоляционную конструкцию с заранее заданными свойствами. Особенность интергальной структуры теплогидроизоляционной конструкции заключается в том, что отдельные слои материала распределены по плотности в соответствии с их функциональным назначением. Периферийные слои изоляционного материала, прилегающие к наружной поверхности полиэтиленовой оболочки, имеют более высокую плотность и прочность, а средний слой, выполняющий основные теплоизоляционные функции, имеет меньшую плотность, но зато и более низкую теплопроводность. Благодаря хорошей адгезии периферийных слоев изоляции к поверхности контакта, существенно повышается прочность изоляционной конструкции. Благодаря высокому тепло- и элеткросопротивлению и низким воздухопроницаемости и влагопоглощению наружной полиэтиленовой оболочки, теплогидроизоляционная конструкция защищает теплопровод не только от тепловых потерь, но и от наружной коррозии. На базе пенополимерных материалов создан ряд модификаций изоляционных конструкций теплопроводов, проходящих в настоящее время стадию технологической доработки и опытной проверки.

Вот главные из них:

- полимербетонная изоляция, выполняемая методом формирования из полимерных материалов с неорганическими наполнителями в которой гидроизоляционной оболочкой служит плотный полимербетон;

- изоляции, накладываемая на стальную трубу методом напыления, предназначенная в основном для трубопроводов диаметром более 500 мм.

Наряду с конструкциями бесканальных теплопроводов с монолитными оболочками, имеющими адгезию к поверхности стальных трубопроводов, сооружаются также теплопроводы с монолитными оболочками без адгезии к поверхности трубопроводов. Одним из типов индустриальных бесканальных теплопроводов в монолитных оболочках без адгезии к наружной поверхности трубы является теплопровод в битумоперлитной изоляции.

Битумоперлит, битумокерамзит и другие аналогичные изоляционные материалы на битумном вяжущем компоненте обладают существенными технологическими преимуществами, позволяющими сравнительно просто индустриализовать изготовление монолитных оболочек на трубопроводах. Но наряду с этими указаниями технология изготовления оболочек нуждается в улучшении для обеспечения равномерной плотности и гомогенности битумоперлитной массы как по периметру трубы так и по ее длине.  Кроме того, битумоперлитная изоляция, при длительном прогреве при 150ОС теряет водостойкость, что ведет к снижению антикоррозийной стойкости. Для повышения антикоррозийной стойкости битумопрелита в процессе изготовления горячей формовой массы вводят полимерные добавки в портландцемент, что повышает температуроустойкость, влагостойкость, прочность и долговечность конструкции.


Информация о работе «Оборудование тепловых сетей»
Раздел: Строительство
Количество знаков с пробелами: 33327
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
29060
0
1

... банкротству. В результате, сохранив материально – техническую базу, руководству МУП «Ишимские тепловые сети» удалось сформировать эффективный механизм хозяйствования, способный обеспечить экономическую самостоятельность и дальнейшее развитие производственного потенциала. Одним из первых шагов, стали анализ экономической составляющей действующего тарифа, упорядочивание систем его учета и контроля. ...

Скачать
18279
2
4

... ,92 20194,88 22025,28 Таблица 2. Гидравлический расчет боковых ответвлений подающих трубопроводов тепловой сети Участок 2-2' 3-3' 4-4' 5-5' Расход теплоты Q, Вт 826000 472000 492000 467000 Расход теплоносителя G, т/ч 17,81 10,17 10,6 10,06 Условные диаметры dy, мм 80 80 80 80 Наружные диаметры dн×S, мм 89×3,5 89×3,5 89×3,5 89×3,5 Длина ...

Скачать
43135
4
0

... нагрузке повышенного потенциала и малых нагрузках отопления и вентиляции можно применять паровые системы теплоснабжения. 2. Трубы, опоры, компенсаторы и их соединения Наибольшее применение для устройства инженерных сетей получили стальные трубы, выпускаемые промышленностью для резьбовых и безрезьбовых соединений, бесшовные (цельнотянутые) и со швом (сварные). Стальные водогазопроводные трубы ...

Скачать
25226
15
5

... руб/год Полные издержки производства при передаче тепловой энергии, тыс руб/год, Иполн = Иэкс + Ццэх + Цсет Иполн = 3,3556378 + 33,556378 +2,529601 = 39,4416168 млн руб/год Глава 3. РАСЧЕТ СЕБЕСТОИМОСТИ ПЕРЕДАВАЕМОЙ ТЕПЛОВОЙ ЭНЕРГИИ И ПЛАНИРОВАНИЕ КОЛИЧЕСТВА ПОЛУЧАЕМОЙ ПРИБЫЛИ Плановая себестоимость передачи тепловой энергии (без учета отказов тепловых сетей ), руб/Гкал, Спл = ( ...

0 комментариев


Наверх