6. Анкеровка арматуры верхнего пояса
принимаем длину анкеровки арматуры верхнего пояса 210 мм.
5.6.2 Расчет опорного узлаРазличают два расчета на прочность опорного узла:
1. Расчет из условия отрыва нижнего пояса по сечению АВ из-за ненадежности анкеровки преднапряженной арматуры и дополнительных стержней.
Рис. 22 – Схема разрушения опорного узла с отрывом нижнего пояса
Для того, чтобы не произошел отрыв нижнего пояса, должно удовлетворяться условие:
где Nw – усилие в поперечной арматуре, пересекающей трещину; Ns и Nsp – усилия, воспринимаемые дополнительной арматурой Ns и преднапряженной арматурой Nsp с учетом уменьшения напряжений на длине анкеровки.
Учитывая, что напряжения в арматуре на длине анкеровки снижаются от Rspили Rs до нуля по прямой зависимости, получаем:
и при и
где , - расстояния от торца фермы до пересечения рассматриваемого стержня с прямой АВ; - - длины зон анкеровки преднапряженной и обычной арматуры. - для канатов К-19.
Величина принимается максимальной из двух условий:
1)
2) Принимаем
Определяем в масштабе расстояния до линии обрыва (рис.22):
Из условия отрыва требуемое усилие в поперечной арматуре узла:
Принимается в сечении поперечная арматура: 2Æ8 А-III с As=1,01 см2, с шагом 100 мм, тогда
2. Расчет из условия изгиба опорного узла по наклонному сечению АС.
Так как сечения АВ и АС для нижней арматуры практически совпадают, усилия в продольной арматуре не меняются.
Высота сжатой зоны (рис. 23):
Проверка прочности наклонного сечения при действии изгибающего момента производится по формуле
где
Ранее получено усилие Nw=345,42 кН.
Поэтому
Условие прочности по наклонному сечению АС на действие изгибающего момента удовлетворяется.
Рис. 23 – Схема усилий в сечении АС при расчете на прочность на действие момента
Исходные данные:
Заглубление фундамента:
Согласно СНиП 2.02.01-83* "Основания зданий и сооружений" нормативная глубина промерзания определяется по формуле:
где - коэффициент равный сумме отрицательных среднемесячных температур для Хабаровска, как наиболее близко расположенного к г. Мухен (Мухен отсутствует в табл.3 СНиП 23-01-99 Строительная климатология); d0=0,23 – величина, принимаемая для суглинков.
Расчетная глубина сезонного промерзания грунта df определятся по формуле:
- где kh=0,6 – коэффициент, учитывающий влияние теплового режима сооружения. Принимаем глубину заложения фундамента Hз=1,2 м.
Сечение | Сочетание | Номера нагрузок | Расчетные | Нормативные | ||||
М, кНм | N, кН | Q, кН | М, кНм | N, кН | Q, кН | |||
У обреза фундамента | +Моф -Моф Nmin,оф | 2,8,14 2,5,13 0,8,14 | +231,52 -245,85 +231,26 | +669,89 +1059,58 +605,25 | -34,44 +15,42 -35,37 | |||
У подошвы фундамента | +Мпф -Мпф Nmin,пф | 2,8,14 2,5,13 0,8,14 | +267,68 -262,04 +268,40 | +669,89 +1059,58 +605,25 | -34,44 +15,42 -35,37 | +232,77 -227,86 +233,39 | +582,51 +921,37 +526,30 | -29,95 +13,41 -30,76 |
Усредненная плотность фундамента и грунта на обрезах расчетное сопротивление грунта R=0,20 МПа; класс бетона В15; Rb=8,5 МПа; Rbt=0,75 МПа; Еb=20500 МПа. Класс арматуры А-II. Rs=280
МПа; Rsc=280 МПа.
Примечания:
1)
2)
3)Q(Nmin)=
(Hф=1,05 м)
Нормативные усилия получены делением расчетных на усредненный коэффициент надежности по нагрузке
Рис.24 – Схема загружения фундамента
6.1 Определение размеров подошвы фундамента 6.1.1 Выбор типа фундаментаФундамент проектируется симметричным, если отношение моментов разных знаков , а также если соблюдается условие
В расчете:
Следовательно, фундамент симметричный.
6.1.2 Назначение размеров подошвы фундаментаПринимается отношение ширины подошвы фундамента к длине Первоначально Далее (кратно 0,3 м).
Параметры:
Длина подошвы:
Принимаем (кратно 0,3 м).
Тогда площадь подошвы равна
Проверяем условие Увеличим b до 2,4 м. Тогда отношение Площадь подошвы равна
6.1.3 Проверка напряжений под подошвой фундаментаI сочетание: N=582,51 кН; M=232,77 кНм;
II сочетание: N=921,37 кН; M=227,86 кНм;
III сочетание: N=526,30 кН; M=227,86 кНм;
Проверка среднего давления:
Условие выполняется с большим запасом, поэтому изменяем размеры подошвы до 2,4 х 3,6 м. Площадь подошвы равна
I сочетание: N=582,51 кН; M=232,77 кНм;
II сочетание: N=921,37 кН; M=227,86 кНм;
III сочетание: N=526,30 кН; M=227,86 кНм;
Проверка среднего давления:
6.2 Назначение размеров подколонникаКонструктивные требования: толщина стенки стакана dc принимается кроме этого, в плоскости изгиба при при
В нашем случае
Принимаем (в плоскости М) dc=15 см. Тогда
Принимаем hп=1,20 м (кратно 0,3 м).рр
Принимаем из плоскости момента dc=0,15 м, тогда ширина сечения подколонника:
Принимаем bп=0,9 м (кратно 0,3 м).
Рис.25 – Схема подколонника.
Глубина стакана hc определяется из двух условий:
1. Глубина стакана должна быть не менее:
при (0,44 м<1,4 м) большего размера сечения колонны плюс 5 сантиметров:
2. Глубина заделки колонны в стакане должна удовлетворять требованию заделки рабочей арматуры колонны:
Из условий анкеровки арматуры:
где
но не менее и
Принимаем большую глубину стакана: hc=0,75 м.
Краевые напряжения на грунт определяются по формуле:
6.4 Определение высоты плитной части фундаментаВысота плитной части фундамента НПЛ определяется из условия продавливания. При этом возможно два случая:
а) продавливание происходит от подколонника, что возможно при
где Нп – высота подколонника;
б) продавливание от дна стакана, что возможно при
Так как пока в расчете высота подколонника Нп неизвестна, предполагаем второй случай расчета.
Требуемая рабочая высота плитной части фундамента Н0 определяется по формуле:
где Pгр=0,16 МПа.
Вместо bn и hn подставляются размеры колонны bcol+0,1=0,5 м и hcol+0,1=0,8 м.
Высота плитной части должна быть не менее:
(модуль 0,3 м).
Принимаем двухступенчатую плиту с высотой нижней ступени 0,45 м и верхней – 0,3 м.
НПЛ=0,75 м, H0=0,75-0,05=0,70 м.
Проверяем случай расчета:
где
Так как м, имеет место второй случай (продавливание от дна стакана).
6.5 Расчет высоты и вылета нижней ступениВысота нижней ступени h1 проверяется расчетом на продавливание, а наибольшая величина с1max устанавливается расчетом на поперечную силу при отсутствии поперечной арматуры.
Расчет на продавливание производится на действие только расчетной продольной силы Nc, действующей в уровне торца колонны:
на продавливание фундамента колонной от дна стакана;
на раскалывание фундамента колонной.
Расчетная продольная сила Nc, действующая в уровне торца колонны, определяется из условия
Nc=
где - коэффициент, учитывающий частичную передачу продольной силы N на плитную часть фундамента через стенки стакана и принимаемый равным но не менее 0,85,
- площадь боковой поверхности колонны, заделанной в стакан фундамента.
принимаем
Проверка фундамента по прочности на продавливание колонной от дна стакана при действии продольной силы Nc производится из условия
,
где А0 – площадь многоугольника abсdeg (см. рис.26), равная
h0,p – рабочая высота пирамиды продавливания от дна стакана до плоскости расположения растянутой арматуры;
bp, lp – размеры по низу меньшей и большей сторон стакана.
bp=0,50 м, lp=0,80 м.
Рис. 26 – Схема образования пирамиды продавливания в стаканном фундаменте от действия только продольной силы
Проверка фундамента по прочности на продавливание:
- условие не выполняется, увеличим высоту нижней ступени до 60 см.
Пересчитаем усилия, действующие в подошве фундамента.
Таблица 9 –
Сочетание усилий
Сечение | Сочетание | Номера нагрузок | Расчетные | Нормативные | ||||
М, кНм | N, кН | Q, кН | М, кНм | N, кН | Q, кН | |||
У обреза фундамента | +Моф -Моф Nmin,оф | 2,8,14 2,5,13 0,8,14 | +231,52 -245,85 +231,26 | +669,89 +1059,58 +605,25 | -34,44 +15,42 -35,37 | |||
У подошвы фундамента | +Мпф -Мпф Nmin,пф | 2,8,14 2,5,13 0,8,14 | +272,85 -264,35 +273,70 | +669,89 +1059,58 +605,25 | -34,44 +15,42 -35,37 | +237,26 -229,87 +238,00 | +582,51 +921,37 +526,30 | -29,95 +13,41 -30,76 |
(Hф=1,20 м)
Нормативные усилия получены делением расчетных на усредненный коэффициент надежности по нагрузке
Проверка напряжений под подошвой фундамента
I сочетание: N=582,51 кН; M=237,26 кНм;
II сочетание: N=921,37 кН; M=229,87 кНм;
III сочетание: N=526,30 кН; M=238,00 кНм;
Проверка среднего давления:
Краевые напряжения на грунт определяются по формуле:
Проверка фундамента по прочности на продавливание:
- условие выполняется.
Рис. 26 – Схема образования пирамиды продавливания в стаканном фундаменте от действия только продольной силы
Проверка фундамента по прочности на раскалывание от действия продольной силы Nc производится из условия:
при
при
- коэффициент трения бетона по бетону, принимаемый равным 0,75;
- коэффициент, учитывающий совместную работу фундамента с грунтом и принимаемый равным 1,3;
Аl, Ab – площади вертикальных сечений фундамента в плоскостях, проходящих по осям сечения колонны параллельно соответственно сторонам l и b подошвы фундамента, за вычетом площади стакана фундамента (рис.27)
следовательно
- условие выполняется.
Рис.27 – Площади вертикальных сечений Аl и Аb при раскалывании стаканного фундамента от действия только продольной силы
Максимальный вылет нижней ступени С1max определяем при условии отсутствия поперечной арматуры на ширину b=1 м по формуле:
проверка выполняется.
Рис.28 – К расчету высоты и вылета нижней ступени фундамента
Расчет арматуры подошвы фундамента производится из условия изгиба плиты под воздействием реактивного давления грунта в двух направлениях: в плоскости рамы и из плоскости рамы (рис. 29).
1. В плоскости рамы:
Рис.29 – Расчетная схема работы плиты на изгиб (ступенчатая консоль)
Pгр=0,174 МПа;
Изгибающий момент на один метр ширины фундамента:
Требуемая площадь арматуры на 1 метр ширины фундамента в сечении 1-1:
В сечении 2-2:
В сечении 3-3:
Шаг стержней принимается равным 250 мм. Принимаем по большему значению 4Æ14 A-II с As=6,16 см2/м.
2. Из плоскости рамы на 1 погонный метр
Площадь арматуры на 1 погонный метр длины фундамента:
В сечении 1’-1’:
В сечении 2’-2’:
В сечении 3’-3’:
Шаг стержней принимается равным 200 мм. Принимаем по большему значению 4Æ10 A-II с As=3,14 см2/м (минимальный диаметр).
Таким образом, принята сварная сетка с размерами ячеек 250х200 мм из стержней Æ14 А-II, расположенных вдоль длинной стороны плиты фундамента, и из стержней Æ10 А-II, расположенных вдоль короткой стороны.
Так как диаметр арматуры класса А-II сетки не превышает 22 мм, в соответствии с п.5.26 пособия к СНиП 2.03.01 – 84* Бетонные и железобетонные конструкции проверку ширины раскрытия трещин в плитной части фундамента производить не требуется.
6.7 Расчет подколонникаТак как высота подколонника составляет 30 см, достаточно только поперечное армирование.
Поперечная арматура устанавливается конструктивно. Расстояние между горизонтальными сетками – 10 см, диаметр стержней – 10 мм.
Рис.30 – Горизонтальная арматура подколонника
1. Гуревич Я.И., Танаев В.А. Расчет железобетонных конструкций одноэтажного промышленного здания: Учебное пособие для курсового и дипломного проектирования. – Хабаровск: Изд-во ДВГУПС, 2001. – 72 с.: ил.
2. Байков В.Н., Сигалов Э.Е. Железобетонные конструкции. Общий курс. – М.: Стройиздат, 1991. – 767 с.
3. СНиП 2.03.01-84* Бетонные и железобетонные конструкции/Минстрой России. – М.: ГП ЦПП, 1996. – 76 с.
4. СНиП 2.01.07-85* Нагрузки и воздействия/ Минстрой России. – М.: ГП ЦПП, 1996. – 44 с.
5. Карты районирования территории СССР по климатическим характеристикам: Приложение 5 обязательное к СНиП 2.01.07-85*/ Госстрой СССР. – М.: ЦИТП Госстроя СССР, 1987. – с.7.
6. Пособие к проектированию фундаментов на естественном основании под колонны зданий и сооружений (к СНиП 2.03.01-84 и СНиП 2.02.01-83) Ленпромстройпроект Госстроя СССР. – М.: ЦИТП Госстроя СССР, 1989. – 112 с.
7. Пособие по проектированию основания зданий и сооружений (К СНиП 2.02.01-83)/НИИОСП им. Герсеванова – М.: Стройиздат, 1986. – 415 с.
8. СНиП 2.02.01-83 Основания зданий и сооружений/Минстрой России – М.: ГП WGG? 1996.
... уложенных с шагом 6 м. В качестве наружных ограждающих конструкций применяются железобетонные панели размером 1,2х6 м. Для расчета элементов каркаса колонн, КЖС – все размеры принимаются в соответствии с каталогом железобетонных конструкций для одноэтажных промышленных зданий. В пояснительной записке приводится лишь расчет и подбор арматуры. Фундамент рассчитывается с учетом требований унификации ...
... для определения основных параметров монтажного крана Таким образом, необходимо подобрать наиболее эффективный комплект монтажных кранов для монтажа сборных железобетонных конструкций одноэтажного промышленного здания. – Учитывая то, что каркас здания состоит из крупных элементов, которые за исключением сборных плит, располагаемых перед монтажом на довольно значительном расстоянии друг от ...
... (табл. 16–20). 10. Мероприятия по охране труда Главные мероприятия при охране труда при возведении одноэтажного промышленного здания базируются на требованиях СНиП 12.03–2002 Безопасность труда в строительстве. При монтаже железобетонных и стальных элементов конструкций необходимо предусматривать мероприятия по предупреждению воздействия на работников следующих опасных и ...
... Сечение второго раскоса Расчет первого раскоса Принимаем сечение раскоса см. Принимаем конструктивно 2ø 10 А-II, т.к. . Сечение раскоса показано на рисунке 12: Рисунок 12. Сечение первого раскоса Расчет и конструирование узлов фермы Длина заделки напрягаемой арматуры см – для канатов ø 12-15 мм. При меньшей длине анкеровка напрягаемой арматуры обеспечивается постановкой ...
0 комментариев